
Belief-Based Utility and Signal Interpretation*

Marta Kozakiewicz�

August 8, 2024�

Abstract

Do people update their beliefs differently after positive versus negative feedback?

The existing literature disagrees on the magnitude and direction of the bias. In

this paper, I propose a new experiment guided by a simple model of belief choice.

The experimental data reveal a strong asymmetry in updating after “good” versus

“bad” news. Moreover, I design a control condition that allows a clear identification

of belief manipulation and provides robust evidence on the underlying mechanism.

The results point towards the role of affect (or utility from beliefs shifted by the

signal) in asymmetric updating. The proposed method can be applied more broadly

to study belief-based utility and its role in belief formation.
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1 Introduction

People tend to overestimate their abilities, making costly mistakes as they hold on to

their biased beliefs at the expense of accuracy. At the same time, individuals often oper-

ate in environments characterized by repeated feedback (examples include academic or

workplace settings). If biased beliefs are costly and there is ample opportunity to learn,

how can overconfidence persist? One explanation advanced in the literature concerns

asymmetric updating.1 It proposes that people update beliefs differently after “good”

versus “bad” news, responding more to positive information. Theoretical models involve

an agent deriving direct utility from his beliefs so that he has an incentive to adopt overly

optimistic beliefs (Brunnermeier and Parker, 2005; Caplin and Leahy, 2019). Although

this explanation is consistent with observed overconfidence, the empirical evidence on

asymmetric updating is not conclusive. The experimental data brought mixed results,

showing optimistic/pessimistic updating or no effect (Benjamin, 2019).2 Inconsistent

findings can be attributed to methodological limitations, e.g., the absence of a control

condition based on the same primitives (Barron, 2021; Drobner and Goerg, 2024), or

ignoring the timing of the resolution of uncertainty (Drobner, 2022).

In this paper, I take the next step to fully understand the nature of the bias. Guided

by a simple model of belief choice, I design an experiment that exposes the conditions

necessary for the asymmetry to arise.3 The experimental data show strong asymmetry

in updating after “good” news and elucidate the underlying mechanism. The results

provide suggestive evidence of why some work failed to capture the differential response

to signals and point toward a more comprehensive theory of belief formation.

The experiment has the following structure. In the treatment condition, participants

solve an IQ test and receive a noisy signal about their relative performance. Then, they

report a subjective probability that the received signal corresponds to their performance.

I designed the task in a way that, according to the model, would enhance the chances of

capturing the effect. Furthermore, I introduce a new control condition. Subjects in the

control group solve the same IQ test and consider the same signal structure but report

their beliefs about hypothetical signal realizations. By comparing the two conditions,

I separate belief manipulation due to the utility from “good” or “bad” news from dis-

tortions caused by other factors. The collected data reveal a substantial asymmetry in

the treatment condition: there is a large and highly significant difference in subjects’

1Other explanations that consider motivated reasoning rather than cognitive processes fall into two
categories: information avoidance (see Golman et al., 2017, for a review of the literature) and selective
recall (Chew et al., 2020; Huffman et al., 2022; Zimmermann, 2020).

2I review the relevant literature at the end of the introduction.
3The experiment was pre-registered in AEA RCT Registry (Registration No. AEARCTR-0006233).
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responses to “good” versus “bad” news. Participants tend to interpret positive signals

as 10 pp more likely to be informative (18% increase in relative terms). The data show

no asymmetry in the control condition, as predicted by the model. At the same time,

there is a significant difference across the experimental conditions. It provides evidence

of utility-driven belief manipulation that operates in the direction of the preferred state.

The paper makes several contributions. First, the upgraded design of the treatment

condition allows me to capture the effect that, while suggested by the theory, was elusive

for previous studies. Second, the new control condition offers a benchmark based on the

same information over the same unknown state, solving the problem prevalent in the lit-

erature on asymmetric updating. Together with the model, the experiment allows a clear

identification of belief manipulation and provides robust evidence on the mechanism. It

is the first paper that directly tests a model of belief choice and establishes instantaneous

utility as the source of asymmetry. It advances the research that, so far, provided only

indirect evidence on the underlying process. The proposed method is not limited to the

context of IQ but can be applied to study belief formation in other domains.

In Section 2, I describe the design in detail. Subjects first solved an IQ test and then

reported a subjective probability of their score falling into the 1st, 2nd, ..., 10th decile

of the test score distribution. Thus, I elicited a prior belief distribution over deciles,

which I referred to as “ranks”. In the treatment condition, participants received a noisy

signal about their performance. They were shown a number between 1 and 10 that could

be equal to their rank. The framework was described as follows: There are two boxes.

Box 1 contains ten balls with numbers 1 to 10 written on them (each number occurs

exactly once). Box 2 contains ten balls with the same number written on every one of

them. That number is equal to your rank. For example, if a subject’s rank was 4, Box 2

contained ten balls with the number “4” written on them. Subjects were informed that

one ball would be randomly drawn from one of the boxes (either box can be selected with

equal probability 0.5) and displayed on their computer screen. Their task was to tell us

what they thought: Which box did the ball come from? Using an incentive-compatible

mechanism, I elicited beliefs that the ball came from Box 2 (with the numbers equal to

one’s rank).4 The design with two boxes is equivalent to the design used in the literature

4The main advantage of eliciting beliefs about the box instead of rank is that it minimizes confounds
arising from people’s desire to be consistent (Falk and Zimmermann, 2017). By reframing the question,
I avoid asking about the rank multiple times, whereas the composition of Box 2 ensures that I obtain
the relevant probability. As a robustness check, I again elicited the entire distribution of beliefs at the
end of the study. I confirm that beliefs about the box are consistent with the posterior distribution.
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extended to 10 states of the world.5 I adopt a richer state and signal space to generate

a stronger effect. This is based on the observation that it is more painful to learn that

your score was among the worst 10% than to learn that it was below the median.

In the control condition, subjects did not receive a signal but reported their beliefs

for every possible signal realization. The procedure, known as the Strategy Method, is

commonly used in studies on strategic interactions (Brandts and Charness, 2009). The

hypothetical control has an important advantage over alternatives used in the literature:

it is based on the same subjective beliefs over the same unknown state. Previous work

compared how people update beliefs about an ego-relevant outcome (e.g., one’s perfor-

mance in an IQ test) and a neutral parameter (e.g., the performance of a robot).6 This

comparison involves not only learning about different objects but also updating subjec-

tive beliefs, possibly multiple priors, and updating objective probabilities given by the

experimenter. In contrast, the hypothetical control relies only on the assumption that

when a signal is not realized, it does not induce the emotional reaction that distinguishes

“good” and “bad” news from neutral information. The present findings are consistent

with this assumption.

I took several steps to alleviate concerns about the non-comparability of the two

conditions. For example, to minimize differences in the understanding of the task, I also

required the treatment group to consider, one by one, every possible number. Partici-

pants in the control condition evaluated each number separately, using the same interface

as subjects in the treatment condition. The numbers were presented in random order.

In Section 3, I describe a static model of belief choice in the spirit of Brunnermeier

and Parker (2005). In the model, an agent forms beliefs about his unknown ability. He

starts with a prior and receives a noisy signal with known precision. Then, he chooses a

posterior belief facing a trade-off between the utility from the new belief and the costs

of belief manipulation. The costs are increasing in the distance between the chosen

belief and an “unmanipulated” posterior.7 These costs and benefits are all the agent

cares for, as the uncertainty is not resolved at the end of the first period (to incorporate

5One cannot use the same design as in the literature, because the signal structure becomes too compli-
cated when extended beyond the binary case (see Appendix E). The two-box design introduces 10 states
in a way that is easy to explain to participants and allows for a simple elicitation of conditional beliefs.

6See, for instance, Coutts (2019), Eil and Rao (2011), and Möbius et al. (2022). A notable exception
is a contemporaneous study by Drobner and Goerg (2024) who introduce an exogenous variation in
subjects’ perception of the IQ test validity. Their results are consistent with my findings, however, their
work differs in terms of methods and the conceptual framework (e.g., belief-based utility is defined over
the results of a valid or invalid IQ test, whereas I define utility over beliefs about one’s intelligence). The
latter has important implications for the interpretation of experimental manipulation and the results.

7This assumption, commonly used in theoretical work, implies that belief formation is partly driven
by a rational process. One can view it as a modeling technique, conceptually similar to a dual-self model
(Fudenberg and Levine, 2006), describing an internal, subconscious process of coming to a belief.
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this feature, participants were informed that their test results will be available to them

only one week after the session). Importantly, the utility is derived from beliefs the agent

holds at the moment. When deciding about a hypothetical signal, the utility stems from

the prior that is unaffected by speculations. In this case, there is no incentive for belief

manipulation, so the agent reveals the unmanipulated posterior.

In Section 4, I present the results. The main outcome variable is the posterior belief

revealed through the decision about the box. I test for asymmetry by comparing beliefs

in the treatment condition with 1). the Bayesian benchmark, and 2). the decisions in the

control condition. Both serve as a proxy for the unmanipulated posterior. The Bayesian

benchmark is calculated based on beliefs elicited in the first part of the study.8

In the treatment condition, subjects reported an average probability of 38.5 pp that

the signal came from Box 2 (56.1 pp for signals with non-zero prior probability). The

average masks substantial heterogeneity in responses to signals. The reports are 10 pp

higher after signals “1”, “2”, or “3” (the best signals) compared to the reports after the

remaining signals (p-value of one-tailed t-test = 0.005). The result is robust to changes

in the definition of a “good” signal and controlling for observables. Importantly, it is

not driven by selection—the coefficient is nearly identical if I estimate the effect on a

sub-sample of subjects who received a signal from the box with random numbers.

There is no similar relation in the control condition, in line with the model prediction.

On average, subjects in the control condition reported a conditional probability of 30 pp.

(50.2 pp for signals with non-zero prior probability).9 In contrast to the treatment,

the reports in the control condition do not depend on the signal value. Moreover, the

estimated weight placed on the Bayesian benchmark is no different than in the treatment

condition. Subjects seem to assess signals in the same way but without the overreaction

to positive information. This result provides suggestive evidence that the treatment

effect is not due to the different structure of the two conditions (hypothetical vs not)

but stems from the belief-based utility. Finally, the “good” news effect is present across

the experimental conditions. The difference-in-difference analysis shows that people tend

to report 10.1 pp higher probability after receiving “good” news.

8I use the prior probability placed on the rank indicated by the signal. As the Bayes’ rule is undefined
for p0 = 0, the baseline sample is restricted to subjects who assigned a positive probability to the relevant
rank. In a second sample, I include subjects who assessed signals that were close to their prior belief
distributions. The decisions after unexpected signals (signals two or more ranks away from one’s prior
belief distribution) are analyzed separately and discussed in Section 4.5.1.

9One might worry that, with many decisions to make, subjects might gravitate toward the default
option of 50 pp. Overall, the share of “default” choices is below 5% in the control condition and even lower
(1.3%) in the treatment. The results are robust to excluding these subjects from analysis. Moreover,
I show that time effects in the control condition are not driving the results. The results are similar if
based on the first five choices made in the control condition or the last five choices instead of all ten.
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My work draws on the literature on motivated reasoning. This literature examines

various ways in which people distort their beliefs to achieve certain goals (see Bénabou

and Tirole, 2016, for a comprehensive review). One strand of this literature studies belief

formation when an agent derives utility from his beliefs. The theory predicts that, in this

case, the agent will deviate from rationality adopting optimistic beliefs (Brunnermeier

and Parker, 2005; Caplin and Leahy, 2019). The empirical evidence is less conclusive—

the results from lab experiments differ in the magnitude and the direction of the effect.

Some authors document asymmetry in the direction of the preferred state (Drobner,

2022; Drobner and Goerg, 2024; Eil and Rao, 2011; Möbius et al., 2022), others found

no asymmetry (Buser et al., 2018; Schwardmann and Van der Weele, 2019; Zimmermann,

2020), or asymmetry in the opposite direction (Coutts, 2019; Ertac, 2011). As the designs

differ along several dimensions (see Appendix E), the findings are difficult to reconcile.10

This paper makes several methodological and conceptual contributions. First, I de-

velop a control condition that enables a causal identification of the effect of “good” news.

More importantly, the new control allows testing a model of belief choice, opening the

way for studying the utility from beliefs—its functional form and properties in different

contexts and across different samples. Such evidence would inform the theory and ad-

vance the development of better models of learning with belief-based utility. Moreover,

the tools developed in this paper can be applied to other domains. As long as people

derive utility from their beliefs, their learning will be guided by similar principles as

learning about cognitive ability. Possible applications include the formation of beliefs on

politically contentious issues such as climate change or vaccination, learning about oth-

ers (their trustworthiness or cooperativeness) in social interactions, or updating beliefs

about social norms when confronted with changes in socially acceptable behavior.

Second, the results provide a unique insight into the nature of the bias. As asym-

metry arises only after the signal, the results point towards the role of affect (the expe-

rience of feeling or emotion, formalized as utility from beliefs) in asymmetric updating.

This is a noteworthy finding, as it suggests who might be more prone to biased belief

formation—special attention should be paid to people experiencing strong emotions and

using particular strategies to regulate them.11

10A recent study by Drobner (2022) shows that the differences in findings can be driven by the
differences in the expected timing of the resolution of uncertainty, as people expecting to learn the
state sooner might face incentives to form more accurate beliefs. My paper complements this work by
providing direct evidence of the role of instantaneous utility from beliefs in asymmetric updating.

11I collected additional data on self-reported emotions experienced before the task and the habitual use
of emotion regulation strategies. The data reveal correlations between subjects’ responses to the ques-
tionnaires and deviations from the Bayesian benchmark. Since the hypotheses were not pre-registered,
the result should be only viewed as a suggestion for future research. I report them in Appendix G.
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The final methodological contribution concerns designing a treatment condition that

extends the binary state and signal space without introducing a complicated signal

structure. It allows the experimenter to generate a quantitatively large shift in beliefs.

On account of that, my paper hints at why some of the previous work did not capture

the effect. If the increase in utility is not large enough, due to a coarse signal structure

or a particular functional form, the manipulation might be hard to detect in the data.12

2 Experimental Design

The experiment consisted of two parts. In the first part, subjects completed an IQ test.

The second part included the elicitation of prior and posterior beliefs and a stage in

which subjects received signals (or considered every possible signal realization in the

control condition).13 The outline of the experiment is presented in Figure 1. I describe

the procedures in detail in the following subsections.

IQ test

Questionnaire I

Belief Elicitation I

Signal Realization
and Decision

Hypothetical Signal
and Decision (10 times)

Belief Elicitation II

Questionnaire II

Figure 1: The outline of the experiment.

12For example, the experiments studying updating in the financial domain found little asymmetry (see
Barron, 2021). The utility from a “good” signal about a small monetary gain is likely to be lower than
the utility from a “good” signal about one’s IQ, which is a known predictor of all future earnings.

13In my study, subjects received only one signal. The previous work used to introduce more than one
signal and report the average effect (e.g., Eil and Rao, 2011). Yet, the way people respond to a sequence
of signals is a potential confound that should be minimized when estimating the effect of signal valence.
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2.1 IQ Test

In the first part of the experiment, I evaluated subjects’ cognitive ability using an IQ

test.14 The test consisted of 29 standard logic questions and participants were asked to

solve as many of them as possible in 10 minutes. Individual scores were calculated based

on the number of correctly answered questions minus the number of incorrect answers,

and subjects were paid 0.75 euro for every point they obtained.

Participants were informed that their earnings from the IQ test will be added to

their earnings from the remaining parts of the experiment and paid at the end of the

session. They were also informed that, although they will receive the entire sum of

money at the end of the study, they will not learn their IQ test score nor how much

money they earned in each part. Their test results and the details of their payoffs will be

available to them one week after the session. Every participant received a personal link

to a website where he could check his (and only his) IQ test result and payment details.

This procedure enabled me to minimize the dynamic concerns (e.g., subjects might adopt

overly pessimistic beliefs to “prepare” themselves for a disappointing outcome) and focus

on the trade-off described in the model.

2.2 Belief Elicitation

At the beginning of the second part, participants were told that they have to complete

three tasks, for which they can earn up to 12 euro. They were informed that one task

will be drawn at random at the end of the session, and they will be paid only for that

task. In the first task, I elicited subjects’ beliefs about their test scores being in the

1st, 2nd, ..., 9th and 10th deciles of the distribution of the test scores of 300 participants

who took the same test in the BonnEconLab in the past. I introduced 10 “ranks”, with

Rank 1 denoting the highest rank (assigned to participants whose IQ test scores were

higher than or equal to the test scores of 90–100% of former participants), and Rank 10

denoting the lowest rank (defined analogously). The first task was to allocate 100 points

among the ten ranks in a way that reflects one’s beliefs about their relative performance

in the IQ test.

14Cognitive ability is known to strongly correlate with educational achievement, success in the labor
market, and income. As people care deeply about intelligence, a measure of IQ seems to be a good can-
didate for an ego-relevant parameter. At the same time, there is evidence that people have overconfident
beliefs about their cognitive ability, suggesting that belief-based utility might be in play. Lastly, there
are established methods to assess it, providing me with a measure that is valid and easy to obtain.
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Figure 2: The interface used in the first task (the prior belief elicitation).

A screenshot of the computer interface used by subjects is presented in Figure 2.

Participants allocated points by dragging blue arrows on ten scales corresponding to

Rank 1 to 10. Subjects were informed they can move the arrows back and forth to

correct their choices. The text below each scale informed a participant how many points

he allocated to a given rank, and the allocation immediately appeared on the graph to

the right. The number above the graph indicated how many points the participant still

has to allocate before he can proceed to the next task.

To incentivize truthful reports, I used the binarized scoring rule (Hossain and Okui,

2013) as follows. A random variable X takes one of 10 values: (1,0,...,0,0), (0,1,...,0,0),

..., (0,0,...,1,0), (0,0,...,0,1); the position of 1 indicates the decile into which a subject’s

IQ test score falls. The agent makes a report x = (x1, ..., x10), where xi denotes the

share of points allocated to the decile i ∈ {1, ..., 10}. The researcher observes the IQ test

score in the kth decile, the agent wins the prize if the QSR for multiple events,

s(x, k) = 2xk −
∑
i

x2i + 1,

exceeds a uniformly drawn random variable with the support [0, 2].
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The procedure was explained to the subjects in a simple way. More importantly,

the instructions directly spelled out the main implication of the method: the probability

of getting a large prize (12 euro) is maximized when a person allocates the points in a

way that reflects her beliefs about her rank. I followed the same procedure during the

second belief elicitation at the end of the study. It is worth noting that, during the first

belief elicitation, subjects were not aware that they will be asked to state their beliefs

one more time.

2.3 The Signal Stage

After the first belief elicitation, participants received instructions for the second task.

The task was explained in simple language, using pictures and illustrative examples. It

was framed in a neutral way and described as follows. There are two boxes. Each box

contains 10 balls with numbers written on them. Box 1 contains balls with numbers from

1 to 10, and every number appears exactly once. The composition of the second box

depends on your rank in the IQ test. Box 2 contains 10 balls that all have one number

written on them, and this number is equal to your rank.

The composition of the boxes of a person assigned Rank 2 is presented in Figure 3.

For every participant, a computer program randomly selected one of the two boxes. Next,

one ball was drawn from the selected box and displayed on the participant’s screen. The

participant did not know which box the ball was drawn from, but he knew that either

box can be selected with equal probability 1
2 . After seeing the ball, he had to state his

beliefs about the box selected by the computer. I used the same incentive-compatible

elicitation method as for the prior belief elicitation. Subjects had to allocate 100 points

Figure 3: The composition of the boxes of a person whose rank was 2.
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between Box 1 and Box 2 in proportions that reflected their beliefs about the source

of the signal. The probability of getting a large prize (12 euro) was maximize when a

person allocated her points in a way that reflected her true beliefs.

Participants were instructed on how to arrive at the Bayesian posterior given one’s

belief.15 I explained it in two steps with a simple example. First, I demonstrated how a

person should allocate her points after different signal realizations if she knew her rank.

Then, I showed how a person should allocate her points if she was not sure about her

rank, but was assigning a certain probability to it.

Step 1: How should a person ranked 2 allocate her points if she knew for sure that

her rank is 2, and saw a ball with the number “2” on it? There are 10 times as many

balls with “2” in Box 2 as there are in Box 1, hence it is 10 times as likely that the ball

came from the second box. Therefore, the person should allocate 9 points to Box 1, and

10 times as many, 90 points, to Box 2 (the remaining point should be allocated to the

box with a higher probability).

Step 2: What if a person did not know her true rank, but she believed that there is

30% chance that her rank is 2? The same logic applies to this case. One can visualize

30% chance as 3 out of 10 balls in Box 2 having a number “2” on them. In this imaginary

case, there are 3 times as many balls with the number “2” on them in Box 2 as in Box 1,

implying an allocation of 25 points to Box 1 and 3 times as many (75 points) to Box 2.

A screenshot of the interface used in this task is presented in Figure 4. Importantly,

the interface enabled subjects to split the points in the desired proportions without

calculating the ratios. This feature was added to minimize computational errors. The

text below the scale informed participants about the current allocation and the ratio

between the points allocated to the two boxes. By moving the cursor, a subject could

choose the number of points corresponding to allocating x times as many points to one

of the boxes (with x ∈ {1, 1.1, ..., 99}). The graph below showed the current allocation.

Before proceeding to the signal stage, subjects were required to answer a set of control

questions. The questions were designed to check participants’ understanding of the task

including the steps necessary to arrive at the Bayesian posterior.

15Detailed explanations allow to minimize mistakes and ensure subjects’ understanding of the task.
They are particularly relevant in the lab environment, which grants a tight control over the belief
formation process but is far from natural (in everyday life, it is not common for people to know the
precise signal structure and use it to form probabilistic beliefs). Still, there is a risk of framing or
creating expectations of what “should” be done in the experiment. Fortunately, I find little evidence in
the data of people blindly following the rule.
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Figure 4: The interface used in the second task (the signal stage).

2.4 Experimental Conditions

I introduced two experimental conditions: treatment and control. In the control condi-

tion, subjects were asked to state their beliefs ex-ante, conditional on a number being

drawn. I informed participants that, although they will see every number, their choices

are not entirely hypothetical. At the end of the session, one box will be selected by the

computer program and one ball will be randomly drawn from the selected box. They

will be paid for the decision that corresponds to the number drawn.

This procedure is incentive-compatible as the probability of drawing any number is

at least 5%.16 To alleviate concerns about the non-comparability of the two conditions,

I adopted special procedures targeting the issues raised in the literature. One concern

is that using the Strategy Method might lead to a better understanding of the game—

a consequence of considering the problem from different points of view. In my setup,

considering every possible signal may affect belief formation in the control condition.

For this reason, I also asked participants in the treatment condition to consider every

possible signal realization before they saw the actual draw. Subjects were required to

go through 10 slides with screenshots of the interface used in the control condition.

They were asked to contemplate a hypothetical decision before clicking on the button

16However, if subjects weigh the cost of cognitive effort against the expected payoff, they may exert
less effort in the control condition. In this case, one would expect subjects’ decisions to have a higher
variance—this hypothesis is not confirmed in the data.
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“Continue” which appeared on the screen after 15 seconds. While only the control group

was allowed to enter their choices, both groups were required to think about every signal.

Another problem that may arise in the Strategy Method concerns framing subjects

with the order of options. I addressed this issue by randomizing the order of num-

bers displayed in the control condition and the order of slides presented to the sub-

jects in the treatment condition. Moreover, participants in the two conditions used the

same interface—the only thing that differed was the headline, which said: “The number

drawn” in the treatment condition, and “Consider the number” in the control condition.

2.5 Questionnaires

After each part of the experiment, participants were asked to fill in a questionnaire.

The first set of questions, displayed after the IQ test, included a short version of the

Big-5 personality test (Gerlitz and Schupp, 2005) and the state-trait anxiety inventory

STAI (Spielberger, 1983). The second set of questions, displayed after the three tasks,

comprised the Emotion Regulation Questionnaire (ERQ) by Gross and John (2003) and

a subset of questions from the Achievement Emotions Questionnaire (AEQ) taken from

Pekrun et al. (2011). While Big-5 and STAI are often used in behavioral economics, the

last two questionnaires require some explanation.

The ERQ was designed to assess the habitual use of two strategies commonly used

to alter emotions. First, one can alleviate the emotional impact of a situation by rein-

terpreting it in a different way. This emotion regulation strategy, known as reappraisal,

relies on “applying mental models to the often ambiguous and incomplete information”

(Uusberg et al., 2019). The second strategy, suppression, involves “inhibiting ongoing

emotion-expressive behavior” (Gross and John, 1998, cited in Uusberg et al., 2019).

People differ in their use of reappraisal and suppression, and these differences have im-

plications for their experiences of emotions, their behavior in response to those emotions,

and general well-being (Gross and John, 2003). To measure the use of these strategies,

I administered a 10-item questionnaire developed by Gross and John (2003).17

The AEQ measures achievement emotions (emotions directly linked to achievement

activities and outcomes) experienced by students in academic settings (Pekrun et al.,

2011). I adopted part of the questionnaire to measure the following test-related emotions:

enjoyment, hope, pride, relief, anger, anxiety, shame, and hopelessness.

17The habitual use of the two strategies is measured by the degree to which subjects agree with
particular statements, e.g. “I keep my emotions to myself” or “When I want to feel less negative
emotion, I change the way I’m thinking about the situation”.

13



The questionnaires allow for exploratory investigation of the psychological forces

driving the results. The idea presented in this paper is related to research on emotions

and decision-making (Lerner et al., 2015). One conclusion from this literature is that

emotions may influence decisions via changes in the content of thought, and vice versa.18

For this reason, emotions and the use of emotion-regulation strategies might play a role

in asymmetric updating. Since the hypotheses were not pre-registered, the results are

only mentioned in the discussion section. The exploratory data analysis, delegated

to Appendix G, is meant to raise a question about the role of emotion regulation in

asymmetric updating, which I consider a promising avenue for future research.

3 Theoretical Framework

In this section, I present a one-period model that underlies the experimental design. I

formulate testable predictions and describe the empirical strategy used in the analysis.

3.1 The Model

An agent is learning about the state of the world ω (e.g., his cognitive ability) that can

be high or low, ω ∈ {H,L}. He has a prior belief about his ability being high p0 and

receives a signal s ∈ {H,L} that induces a posterior belief p1,s. The agent derives utility

from his beliefs u(pt), where t ∈ {0, 1} denotes the prior and the posterior belief. The

utility function u(·) is increasing in the probability of the high state, concave and twice

continuously differentiable. Because of belief-based utility, the agent has an incentive

to manipulate his beliefs by choosing a different posterior p̃1,s, which enters his utility

function u(·). I assume a quadratic cost of belief manipulation that depends on the

distance from the unmanipulated posterior p1,s. The agent’s utility after a signal s has

the following form:

U(p̃1,s) = u(p̃1,s)−
1

2γ
(p1,s − p̃1,s)

2, (1)

where γ > 0 is the cost parameter. The choice of p1,s that maximizes (1) describes the

process of coming to belief about one’s ability.19 The first-order condition gives us:

γu′(p̃1,s) = p̃1,s − p1,s. (2)

18A similar hypothesis about anxiety has been recently tested by Engelmann et al. (2019).
19I assume the process to be outside of the conscious cognition. For this reason, (1) does not include the

monetary reward for reporting truthfully—a conscious decision resolved with the elicitation mechanism.
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The above condition is the solution to the agent’s problem after receiving a signal,

that is, the problem faced by participants in the treatment condition. I assume that

the unmanipulated belief p1,s is a linear function of the belief formed by an impartial

observer—the rational belief pB1,s (the superscript B denotes the Bayesian update):

p1,s = βpB1,s, (3)

where β > 0 captures the degree to which the process of belief formation follows Bayesian

updating. I assume this process to be independent of the directional effect arising from

belief-based utility.

Asymmetry in Belief Updating

Asymmetric updating describes a situation in which a decision-maker puts higher weight

on signals indicating the preferred state compared to the weight he places on the remain-

ing signals (Benjamin, 2019). It is reflected in the manipulation after positive signals

being larger than the manipulation after negative signals, which goes in the direction of

a less preferred state: p̃1,L < p1,L.
20 I define asymmetry as follows:

p̃1,H − p1,H > p1,L − p̃1,L. (4)

In the case of no asymmetry, the left-hand side of (4) is equal to the right-hand side.21

Control Condition

What happens when an agent does not receive a signal, but only considers its realization?

A hypothetical signal does not change the agent’s belief and does not affect the utility

function u(·). The agent keeps deriving utility from his prior belief p0. He makes a

report p̄1,s about the posterior he would form after the signal s. The agent’s utility is:

U(p̄1,s) = u(p0)−
1

2γ
(p1,s − p̄1,s)

2, (5)

where the second term denotes the quadratic cost of manipulation of beliefs about the

conditional posterior. As previously, the cost depends on the distance from the unma-

nipulated posterior p1,s. The agent’s problem is to maximize (5) by choosing p̄1,s. The

20Overweighting negative signals means that the decision-maker manipulates his beliefs by choosing the
probability of the low state, (1−p̃1,L), higher than the unmanipulated probability (1−p1,L). Rearranging
gives us the inequality p̃1,L < p1,L, and the extent of manipulation after a negative signal is: p1,L − p̃1,L.

21In general, asymmetry can also operate in the direction of a less preferred state. This case would be
described by (4) with the reversed inequality sign.
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first-order condition gives us:

p̄1,s = p1,s. (6)

Since the agent has no incentive to manipulate his beliefs, he reports the probability

equal to the unmanipulated posterior. Again, I assume that the unmanipulated belief

p1,s is a linear function of the rational belief: p̄1,s = βpB1,s, with β > 0.

3.2 Testable Predictions

The overarching question of the paper is whether there is asymmetry in belief formation.

I approach this question in two ways. In the first approach, I test the prediction (4)

using the Bayesian benchmark as a proxy for the unmanipulated belief p1,s. I consider

the following regression model:

Yi = α0 + α1 Y Bayes
i + α2 Xsignal

i + ϵi. (7)

The dependent variable Yi denotes the decision in the main task – how many points a

subject allocated to Box 2 after a signal s. This decision reveals the manipulated belief

that the state is high after s = H or the state is low after a signal s = L. I regress it

on an independent variable Y Bayes
i , which denotes the number of points that should be

allocated according to Bayes’ rule (the Bayesian benchmark), and an indicator variable

Xsignal
i , which takes value 1 if the subject received a “high” signal.22 If people tend to

place a higher weight on “good” signals, the difference will be captured by α2.

Hypothesis 1.T

Subjects tend to manipulate their beliefs to a larger extent after “good” signals. The

coefficient α2 in (7) is positive.

The equation (2) reveals that the asymmetry stems from the belief-based utility function

u(·). Therefore, no asymmetry is expected when deciding about hypothetical signal

realizations. The decision of how many points to allocate to Box 2 when considering a

signal is only guided by the rational process, as described by (6). I test this prediction

by estimating the regression (7) using the data from the control condition.

22I assume that the scaling parameter β in (3) is the same for “good” and “bad” signals. This
assumption is later confirmed in the data. Moreover, I also estimate the regression (7) with a restriction
α1 = 1, that is, using the deviations from the Bayesian benchmark Yi−Y Bayes

i as the dependent variable.
All robustness checks can be found in Appendix C.
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Hypothesis 1.C

There is no asymmetry in how participants respond to “good” and “bad” signals in the

control condition. The coefficient α2 in (7) is not significantly different from zero.

The causal effect of receiving a “good” signal on belief manipulation can be confirmed in

a difference-in-difference analysis. Pooling the data from the treatment and the control

condition, I estimate the following regression:

Yi = β0 + β1 Y Bayes
i + β2 Treati + β3 Xsignal

i + β4 Treati×Xsignal
i + ϵi, (8)

where Treati is an indicator variable taking value 1 if a subject was assigned to the

treatment condition. The coefficient at the interaction term informs us about the effect

of receiving “good” news on beliefs in the treatment compared to the control condition.23

Hypothesis 1.T&C

Subjects tend to manipulate their beliefs after “good” signals to a larger extent in the

treatment compared to the control condition. The coefficient β4 in (8) is positive.

The specifications discussed so far employ the Bayesian benchmark as a proxy for the

rational updating process. In the second approach, I propose a different way of modeling

unmanipulated beliefs. I use the data from the control condition to predict, for every

participant in the treatment group, a counterfactual outcome: what the subject would

have decided, had the signal not affected his belief-based utility. To this end, I use the

data from the control condition to estimate the following regression:

Yj = γ̂0 + γ̂1 Zj + ζj , (9)

where Zj is a vector of observables: the subject’s rank, prior beliefs, and the signal

under consideration. I use the model to predict the counterfactual outcome Ŷi for every

participant in the treatment group. Next, using the data from the treatment condition,

23The specification (8) does not take into account that unmanipulated beliefs might have a different
effect in the two conditions. As a robustness check, I estimate the same equation adding the interaction
Y Bayes
i × Treati. The coefficient at the interaction term is not significant, indicating no difference

between β in the two conditions.
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I estimate the following regression:

Yi − Ŷi = γ0 + γ1 Xsignal
i + ζi. (10)

The dependent variable is the deviation from the counterfactual outcome, and I regress

it on a dummy indicating a “good” signal. If there is asymmetry in belief formation

in the direction of the preferred state, the deviations should be greater after positive

signals. This effect will be captured by the coefficient at the Xsignal variable.

Hypothesis 2

Subjects tend to deviate more from the counterfactual outcome after “good” signals. The

coefficient γ1 in (10) is positive.

An alternative specification, allowing for a non-linear relationship between observable

characteristics and outcomes, involves matching. As a robustness check, I estimate the

nearest neighbor matching model to confirm Hypothesis 2.

4 Results

The experiment was conducted in two waves in summer 2020 and 2023 in BonnEconLab

at the University of Bonn. I collected data from 322 participants in the treatment

condition and 106 participants in the control condition.24 The experimental sessions

lasted around 80 minutes and participants earned 21.4 euro on average. I report the

analysis based on the data from 402 participants who made less than three mistakes in

five control questions (I excluded 26 participants, that is, 6% of the sample).25

4.1 Raw Data

In this section, I briefly describe the raw data. For a more detailed description, as well as

additional figures and tests, see Appendix A. I use observations from both the treatment

and the control condition. Panel a) in Figure 5 presents the distribution of the IQ test

scores. The distribution has a mean of 5.30 and a standard deviation of 3.58. The

24Women constituted 26% of the sample, with the same share of women in the treatment and in the
control condition. The gender differences are gathered in Appendix C.7. While there is little difference
in prior beliefs and decisions about signals with non-zero prior probability, women are more likely to
believe that an unexpected signal (a signal to which they assigned zero prior probability) is their rank.

25The sample size was estimated based on the number of participants excluded from the analysis in the
first wave (13 people, 5.8% of the sample). The results are similar, albeit noisier, if I include observations
from mistaken individuals in the analysis.
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Figure 5: IQ Test Results and Prior Beliefs.
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(b) Average number of allocated points.

average rank is equal to 5.54, with a standard deviation of 2.75.26 Importantly, there

is no significant difference between the two groups in the average IQ test score or the

average rank (see Appendix A.1).

Prior Beliefs about Rank

First, I analyze the aggregate belief distribution. For every rank, I calculate the average

number of points allocated by the participants. I present the averages in Panel b) in

Figure 5. The distribution is visibly skewed to the right, with the mean of 4.56 and the

median of 4. On aggregate, subjects appear to be overconfident, as they put a higher

probability mass on lower (better) ranks. Second, I examine individual belief distribu-

tions. I report the averages of individual measures in Table 1. I look at the average

mean belief, the 1st, 2nd, 3rd quartile, and the range. The average mean equals 4.56 and

is not different from the average median belief. However, only 45 participants revealed

a symmetric belief distribution. Almost half of all subjects (193 participants) revealed

a positively skewed belief distribution, and the remaining 164 subjects revealed a nega-

Table 1: Individual belief distributions.

Mean Belief Q1 Median Q3 Range

Mean 4.56 3.82 4.55 5.28 5.02

(Std. Dev.) (1.69) (1.70) (1.73) (1.78) (1.58)

26The average rank was not equal to 5.5 because subjects’ scores were compared to a different group,
as described in Section2.2.
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tively skewed distribution. The average difference between the mean and the median

in the two groups was 0.24 and −0.23, respectively. It should be noted that there is a

small difference in the average beliefs in the two conditions (0.3 rank, significant at the

5%-level). In the analysis, I always control for prior beliefs or the rational benchmark

that is based on subjects’ priors.

Decisions in the Main Task

In Figure 6, I present the average number of points allocated to Box 2 in the two condi-

tions. The bars on the left (in light gray color) show the decisions made by subjects in

the treatment condition, whereas the bars on the right (in light blue) in the control. The

numbers above the x-axis show how many people received a given signal in the treatment

condition (in the control, the number is always 101). For example, 24 participants in the

treatment condition received a signal “3” and allocated, on average, 58 points to Box 2.

The average number of points allocated in the treatment condition is 38.5 and is 8.5

points higher than the average in the control condition (p-value = 0.001).27 Participants

tend to allocate more points after signals “1”, “2”, “3”, or “4” in the treatment compared

to the control condition. The average difference equals 13.4, and it is 7.6 points higher

Figure 6: Decisions in the main task in the treatment and control condition.
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27When I restrict the sample to participants who assigned a non-zero prior probability to the signal
they received, the average increases to 56 points. I note that very few participants allocated exactly 50
points, which was a default option in the main task (the cursor was initially placed in the middle of the
scale). The share of decisions equal to the default option was 1.1% in the treatment and 5.2% in the
control condition. The results are robust to excluding these observations from the analysis.
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than the average difference after the remaining signals.28 A possible explanation for the

observed differences is an upward belief manipulation after a positive signal. However, to

determine the presence of utility-driven belief manipulation, it is necessary to disentangle

the factors driving the effect. To this end, I employ the empirical analysis described in

Section 3.2. The results are presented in the same order as the formulated hypotheses.

First, I analyze the data from the treatment and the control condition separately, and

only afterward, I compare the decisions in the two conditions.

4.2 Data Analysis: Treatment Condition

In this section, I examine subjects’ beliefs in the treatment condition. It is important

to note that, in the model, belief formation is partly driven by the rational process

approximated with the Bayesian update. However, the Bayesian posterior is undefined

for a prior equal to zero. That is, Bayes’ rule does not specify the posterior of an agent

who assigned zero prior probability to the state indicated by the signal. At the same

time, due to the signal structure (subjects observed a random number half of the time),

this is the case for 40% of participants in the treatment condition. I approach this

problem as follows. The main analysis is based on a sample of 173 subjects who received

a signal to which they assigned a non-zero prior probability. In the second step, I include

in the sample participants who received a signal that was adjacent to the individual prior

Figure 7: Belief manipulation after a signal.
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28For signals “1”, “2”, and “3”, which are likely to be considered “good” by the majority of subjects,
the difference in points allocated in the two conditions is equal to 12.6 and it is 5.8 points larger than
the difference after the remaining signals.
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belief distribution.29 The augmented sample includes 212 participants (70% of the treat-

ment group). I analyze subjects’ responses to signals further away from their prior belief

distributions separately and discuss them briefly in Section 3.30

Figure 7 shows how belief manipulation, defied by equations (2) and (3), depends on

the signal realization. To generate the graph, I use β = α1 obtained by estimating (7).31

The numbers above the x-axis show how many participants received a given signal. One

can notice that after worse signals (indicated by higher numbers), subjects manipulate

their beliefs downwards. The pattern is in line with motivated reasoning: participants

are less convinced that a “bad” signal is their rank.

The estimation results are gathered in Table 2. The results in the first two columns

are based on the baseline sample and in the last two columns are based on the augmented

sample. For participants who assigned a zero prior probability to the signal, I replaced

the prior with the smallest value feasible in the experiment (1%). In every regression

in Table 2, the dependent variable is the number of points allocated to Box 2 (the box

with numbers equal to one’s rank). In the first specification, I regress it on the number

Table 2: The effect of a “good” signal on beliefs in the treatment condition.

Good Signal 9.928∗∗∗ 8.916∗∗∗

(3.604) (3.251)

Signal Value -1.975∗∗∗ -1.710∗∗∗

(0.728) (0.627)

Bayes 0.904∗∗∗ 0.860∗∗∗ 0.807∗∗∗ 0.776∗∗∗

(0.091) (0.091) (0.057) (0.058)

N 173 173 212 212
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2.
“Good Signal” is an indicator variable taking value 1 if a subject received one
of the best three signals. “Signal Value” refers to the received signal. It takes
values from 1 to 10, with higher values indicating worse signals. “Bayes” is the
number of points that should be allocated given one’s prior beliefs. Results in
the first two columns are based on a sample of subjects who assigned a non-
zero prior probability to the signal. In the last two columns, I also include
participants who received a signal adjacent to their prior belief distribution.

29A signal is considered adjacent if it is one rank lower (higher) than the first (the last) rank assigned
a non-zero prior probability. For example, if a subject with prior beliefs p = [0, 0, 0.3, 0.5, 0.2, 0, 0, 0, 0, 0],
where i-th element denotes the probability placed on Rank i, received a signal 3, 4, or 5, he would be
included in the main sample. If the signal was 2 or 6, he would be included in the augmented sample.

30In Appendix B, I also present the results based on 1) a sample of subjects who received signals up
to two ranks away from their prior belief distributions, and 2) a sample of all participants.

31A similar graph with β = 1, that is, the simple deviations from the Bayesian benchmark, is presented
in Appendix C.4.
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of points that should be allocated according to the Bayes’ rule and a dummy indicating

a “good” signal. The “Good Signal” variable takes the value 1 if a subject received one

of the best three signals (the result is robust to changes in the definition, i.e., using two,

four, or five best signals, see Appendix C.3).

The coefficient at the “Good Signal” variable equals 9.928 and is significant at the

1%-level (p-value of two-tailed t-test = 0.007). Receiving a signal “1”, “2”, or “3”

has a positive effect on the number of points allocated to Box 2. The estimate does not

change much when I include subjects who received a signal that was outside of their prior

distribution but close enough to be deemed probable (the third column in Table 2).32

Result 1

Subjects tend to manipulate their beliefs to a larger extent after receiving a “good” signal.

The coefficient at the “Good Signal” variable is positive.

In the second specification, I regress the dependent variable on a discrete variable “Signal

Value”, which takes values from 1 to 10 and denotes the signal realization. The coefficient

is negative and significant: observing a higher (worse) signal makes participants deviate

more in the negative direction. One can notice in Figure 7 that the negative relation

breaks down after the worst signal: 7 participants who received a signal “10” allocated

as many points to Box 2 as the subjects who received the best signal “1”. If I control for

those participants, the coefficient at the “Signal Value” increases to −2.830 and becomes

significant at the 1%-level (p-value of two-tailed t-test =0.001).

Lastly, I show that the effect is not due to selection bias. In a setting with informative

signals, selection bias might be a problem because high-ability (low-ability) subjects are

more likely to get better (worse) signals. To exclude the possibility of ability-related

factors driving the results, I ran the same regressions on a sample of subjects who

received a signal from Box 1. Those participants observed a random number—a signal

unrelated to their ability. The results can be found in Appendix C.6. The estimates are

very similar, supporting the claim that the effect is due to the differential treatment of

“good” versus “bad” news and does not stem from the differences in updating between

more and less cognitively able individuals.

32The results are robust to controlling for subjects’ gender, rank, and measures of the individual belief
distribution. Moreover, I obtain the same results if I use the deviation from the Bayesian benchmark as
a dependent variable (this specification is equivalent to restricting α1 = 1). All robustness checks can
be found in Appendix C.
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4.3 Data Analysis: Control Condition

The analysis of hypothetical choices is based on the data from 101 participants in the

control condition. Since every subject in the control group made ten decisions, it leaves

me with 1010 data points. In Appendix B.6, I present the average belief manipulation

depending on the signal under consideration (an equivalent of Figure 7 for the control

condition). The average deviation is slightly below zero and, in contrast to the treatment

condition, there is no downward pattern.

In order to test Hypothesis 1.C, I analyze the data in the same way as the data from

the treatment condition. Table 3 gathers the results of the same regressions as in Table 2

estimated on the data from the control condition. As before, I only include decisions

about signals to which subjects assigned non-zero prior probability. The regression

estimates reveal that there is no significant relation between a “good” signal (regardless

of the definition) and the conditional choice.

Table 3: The effect of a “good” signal on beliefs in the control condition.

Good Signal -0.291 -1.925
(3.269) (2.725)

Signal Value -0.943 -0.494
(0.800) (0.586)

Bayes 0.869∗∗∗ 0.867∗∗∗ 0.719∗∗∗ 0.716∗∗∗

(0.073) (0.072) (0.040) (0.040)

N 483 483 652 652
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Standard errors clustered at the individual level. Their values in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good
Signal” is an indicator variable taking value 1 if a subject received one of the best
three signals. “Signal Value” refers to the received signal. It takes values from
1 to 10, with higher values indicating worse signals. “Bayes” is the number of
points that should be allocated given one’s prior beliefs. Results in the first two
columns are based a sample of subjects who assigned non-zero prior probability
to the signal. In the last two columns, I also include participants who received a
signal adjacent to their prior belief distribution.

Result 2

There is no asymmetry after “good” nor “bad” signals in the control condition. The

coefficient at the “Good Signal” variable is not significantly different from zero.
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Additionally, I examine whether the weight placed on the Bayesian benchmark is the

same in the two conditions. To this end, I compare the coefficient at the “Bayes” variable

in every regression in Table 2 to the corresponding coefficient in Table 3. In every case, I

cannot reject the hypothesis that the two coefficients are equal. This result substantiates

the assumption that β in (3) is the same in the two conditions.

Result 3

The relationship between the Bayesian benchmark and the manipulated belief, captured

by the parameter β, is not significantly different in the two conditions.

This result provides suggestive evidence that the estimated β captures the underlying

rational process (which should be the same in the two conditions), and the difference

between the two conditions is not due to their structure (hypothetical vs not) but stems

from the utility from beliefs.

4.4 Data Analysis: Treatment Effect

In this section, I compare the decisions in the treatment to the control condition. In

Figure 8, I show how the treatment effect depends on the signal realization. Each bar

represents the difference between the average number of points allocated in the treatment

and the control condition. I interpret this difference as the belief manipulation following

the signal. In contrast to the previous sections, the comparison does not involve the

Bayesian benchmark. One can notice that subjects tend to manipulate their beliefs

Figure 8: Belief manipulation after a signal.

-20

-10

0

10

20

30

40

Be
lie

f M
an

ip
ul

at
io

n

1 2 3 4 5 6 7 8 9 10

Signal Realized

25



upwards after better signals: the difference is positive and significant for signals “2”,

“3”, and “4”. This observation is confirmed in the regression analysis presented in

Table 4. In the first three columns, the estimates are based on observations regarding

signals to which subjects assigned non-zero prior probability. In the last three columns,

I include decisions about signals that were adjacent to the prior belief distributions. The

dependent variable is the number of points allocated to Box 2. In the first specification,

I regress it on the Bayesian benchmark, an indicator variable “Treatment”, the “Good

Signal” variable (defined as previously), and its interaction with the treatment dummy.

The coefficient at the interaction term is interpreted as the effect of receiving a “good”

signal compared to the neutral benchmark—the decisions regarding hypothetical signals

in the control condition. The effect is positive and significant at the 5%-level (p-value

of two-tailed t-test = 0.029). Its size is substantial: 10.105 constitutes 18% of the

average decision made in the treatment condition. The result is robust to changes in the

definition of a “good” signal, controlling for rank and measures of belief distribution,

and using the deviations from Bayes as the dependent variable. Moreover, the effect is

not driven by selection—the estimates do not change if I restrict the sample to subjects

Table 4: The effect of signal valence in the treatment condition.

(1) (2) (3) (1) (2) (3)

Treatment 2.112 0.834
(2.475) (2.229)

Good Signal -0.269 11.485∗∗ 11.420∗ -1.838 13.924∗∗∗ 12.779∗∗

(3.249) (4.957) (6.628) (2.704) (3.949) (6.377)

Treat × Good 10.105∗∗ 10.440∗∗

(4.604) (4.029)

Bayes 0.878∗∗∗ 0.738∗∗∗

(0.059) (0.034)

N 656 656 656 864 864 864
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors clustered at the individual level.

Note: The dependent variable in Specification (1) is the number of points allocated to Box 2. “Good
Signal” is an indicator variable that takes the value 1 if a subject received one of the best three
signals.“Bayes” is the number of points that should be allocated given one’s prior beliefs.

Estimates in the first three columns are based on a sample of participants who assigned a non-zero
prior probability to the signal received or considered. In the last three columns, the sample also
includes subjects who received a signal adjacent to their prior belief distribution.

The dependent variable in Specifications (2) and (3) is the deviation from the counterfactual out-
come. The counterfactual was based on values predicted in Specification (2) and with the nearest
neighbor matching in Specification (3). In both approaches, to predict the outcome, I used the fol-
lowing variables: the signal received, the prior assigned to it, the subject’s rank, and the median
belief. The reported errors are bootstrap standard errors based on 500 replications.
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who observed a random number. Lastly, the results are not driven by time effects or

learning in the control condition. The estimates are very similar when based on either

1) the first five decisions made in the control condition or 2) the last five decisions. All

robustness checks can be found in Appendix C.

Result 4

Subjects manipulate their beliefs after “good” signals to a larger extent in the treatment

than in the control condition. The coefficient at the interaction term is positive.

In the remaining columns in Table 4, I report the results of estimating the regression (10).

The dependent variable is the deviation from the counterfactual outcome constructed

using the data from the control condition. The results in columns two and five are

based on the outcomes predicted with the regression model (9) and (10). The results

in columns three and six are based on the counterfactual constructed using the nearest

neighbor matching with the number of neighbors set to three. In both specifications, I use

the following observable characteristics: the signal received, the prior assigned to it, the

subject’s rank, and the median belief. I report the results based on the baseline sample

of participants with non-zero prior beliefs (columns three and four) and the augmented

sample (columns five and six). The deviations from the counterfactual are regressed on

a variable indicating a “good” signal (defined as previously). As we can see in Table 4,

the coefficients at the “Good Signal” variable are positive and significant—after “good”

news, participants tend to deviate in the direction of the preferred state.

Result 5

Subjects tend to deviate more from the counterfactual outcome after “good” signals. The

coefficient at the “Good Signal” variable is positive.

The results provide further support for the model and reveal the mechanism behind

asymmetric updating. When receiving a “good” signal, people tend to interpret it as

more informative compared to what they would say about the same signal ex-ante.

Because the thought of being smart feels good, they would not discard the signal but

rather persuade themselves that it is accurate. The effect operates in the direction of

overconfidence, implying that this well-known bias might be a consequence of asymmetric

updating.
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4.5 Discussion

There are several points that should be noted to complete the analysis. In Section 4.5.1,

I briefly describe subjects’ responses to signals that were far from their prior belief

distributions. The consistency between subjects’ beliefs about the box and the posterior

belief distributions is discussed in Section 4.5.2. In Section 4.5.3, I comment on the

questionnaire data, providing additional evidence for the mechanism behind the results.

4.5.1 Prior probability of zero

How do people update after a signal indicating a state they assigned a prior probability of

zero? In Appendix B.3, I analyze the data on “unexpected” signals. The sample includes

89 observations in the treatment condition (29% of participants in the treatment) and 358

observations in the control condition (35% of observations in the control). Figure 14 in

Appendix B.3 shows subjects’ decisions in the two conditions. One can notice that beliefs

depend on the signal value in a different way than in the main analysis. Participants

in the treatment condition do not perceive lower (better) signals as more likely to be

informative.33 At the same time, there is a significant effect of a “good” signal in the

control condition (see Table 9 in Appendix B.3). Subjects tend to allocate 8 points

more to Box 2 when considering a signal “1”, “2” or “3” (the effect is significant at the

5%-level).34 The difference-in-difference analysis reveals a significant negative effect of

a “good” signal in the treatment condition. Participants tend to be more skeptical of

positive unexpected signals when they receive them.

The results suggest another force (in addition to the costs of belief manipulation)

limiting the extent of motivated reasoning. News “too good to be true” is discounted

more than the unexpected “bad” news. This could explain why overconfidence is not

a universal trait. The results also show the importance of distinguishing possible (or

expected) versus unexpected information. Exploring this feature of individual feedback

is one possible direction for future research.

4.5.2 Consistency

The data from the additional belief elicitation is described in Appendix D. On average,

subjects in the baseline sample allocated 32.86 points to the rank corresponding to the

signal they received. The difference between the prior and the posterior belief amounts to

11.36 percentage points and is highly significant (p-value one-tailed t-test =0.000). The

33The effect of a “good” signal is not significant unless I exclude the outlier visible on Figure 14, in
which case it becomes significant at the 10%-level.

34The result does not change much if I define a signal “4” to be a “good” signal.
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change in beliefs varies with the signal value as expected: it is 80% higher after signals

1 to 4 than after signals 5 to 10 (p-value of one-tailed t-test = 0.0097). A regression

analysis in Appendix D reveals two insights. First, there is a strong correlation between

the decisions about the box and the posterior about the rank, which remains highly

significant even when I control for the Bayesian benchmark. This result proves that

participants correctly understood the main task and based the decisions on their beliefs

about the rank. Second, when I account for the decisions in the main task, signal valence

has no effect on the posterior belief. In other words, there is no additional asymmetry in

how subjects translate the decision about the box into the beliefs about the rank. This

result confirms that the two-box design can be used to study the extent of asymmetric

updating. Still, the additional belief elicitation should be interpreted with caution. I

describe the caveats of eliciting beliefs multiple times at the end of Appendix D.

4.5.3 Questionnaires

In Appendix G, I present the analysis of subjects’ responses in questionnaires. I regress

participants’ decisions in the main task on the Bayesian benchmark, achievement emo-

tions, emotion-regulation strategies, and personality traits. It is worth noting that none

of the BIG-5 personality traits correlates with the decisions in the main task. The only

variables that correlate with subjects’ beliefs are the negative achievement emotions and

the habitual use of reappraisal. The results are different for signals close to one’s prior

belief distribution and the unexpected signals (this further supports the claim that the

two cases involve different processes). Reappraisal has a positive effect when assessing

signals close to one’s priors: subjects who are above the median in their use of reappraisal

allocate 7.8 points more to Box 2 (p-value of two-tailed t-test = 0.01). In consequence,

they deviate significantly less from the Bayesian benchmark.35 When evaluating a sig-

nal far from one’s prior belief distribution, the effect of reappraisal diminishes and the

decisions become driven by the achievement emotions. People who report experiencing

more negative emotions (as compared to the median report) tend to allocate 11.3 points

more to Box 2 (p-value two-tailed t-test = 0.01). Similarly, those who are less anxious

(based on the responses in the STAI questionnaire) tend to allocate 9.6 fewer points to

Box 2 (p-value two-tailed t-test = 0.03). As a result, more upset or anxious participants

end up further away from the Bayesian benchmark.36

35One possible explanation is that people using reappraisal are able to re-interpret the situation to
align their beliefs with the evidence at hand.

36I obtain the same results when I look at the deviations from the counterfactual, as in (10), instead
of the Bayesian benchmark.
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The results suggest that belief formation is affected by 1). the current emotional

state, and 2). the ability to handle one’s emotions with the use of reappraisal. This

points toward the role of beliefs in managing emotional states, as suggested by the

psychological literature (Lerner et al., 2015). More work is needed to understand the

dynamics of emotion regulation and its implication for belief formation.

5 Conclusions

There is mounting evidence that people derive utility not only from physical outcomes

but also from their beliefs about the current or future state. The belief-based utility is

likely to be the driving force behind overconfidence, the demand for (and the avoidance

of) information, and belief polarization. Yet, the way it influences people’s actions and

beliefs is not fully understood. My study takes the next step toward explaining its role

by revealing how belief-based utility shapes the way we interpret new information.
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A Descriptive Statistics

A.1 Differences between participants in the two conditions

Table 5: Differences between participants in the two conditions.

Treatment Control Diff < 0 Diff ̸= 0 Diff > 0

IQ test score 5.349 5.168 p-value: 0.669 0.661 0.331

Rank 5.442 5.832 p-value: 0.109 0.218 0.891

Measures of Belief Distribution:

Mean Belief 4.463 4.817 p-value: 0.038 0.076 0.962

1st Quartile 3.738 4.069 p-value: 0.045 0.090 0.955

Median Belief 4.481 4.812 p-value: 0.044 0.088 0.956

3st Quartile 5.193 5.530 p-value: 0.050 0.100 0.950

Range 5.096 4.782 p-value: 0.041 0.083 0.958

N 301 101

Table 6: Differences between participants in the two conditions.

Treatment Control Diff < 0 Diff ̸= 0 Diff > 0

BIG-5: Extr 14.10 13.90 p-value: 0.663 0.674 0.337

BIG-5: Cons 14.10 14.06 p-value: 0.544 0.913 0.456

BIG-5: Open 14.67 13.97 p-value: 0.956 0.087 0.044

BIG-5: Neur 12.65 13.35 p-value: 0.070 0.141 0.930

BIG-5: Agree 15.29 15.31 p-value: 0.479 0.958 0.521

STAI: State 58.98 58.10 p-value: 0.777 0.446 0.223

STAI: Trait 58.34 57.47 p-value: 0.763 0.473 0.237

N 301 101

33



A.2 Decisions in the two conditions

Table 7: Beliefs and decisions about signals with non-zero prior probability.

Treatment Control Diff < 0 Diff ̸= 0 Diff > 0

Prior Beliefs* 21.502 20.910 p-value: 0.669 0.661 0.331
(1.093) (0.641)

*Probability placed in Belief Elicitation I on the signal.

Main Task** 56.121 50.242 p-value: 0.991 0.018 0.009
(2.043) (1.284)

**Number of points allocated to Box 2 in the main task.

Bayes*** 61.291 60.325 p-value: 0.725 0.549 0.275
(1.362) (0.832)

***Points that should allocated according to Bayes’ rule.

N 173 483

Note: Standard errors in parentheses.

Table 8: Beliefs and decisions about signals with zero prior probability.

Treatment Control Diff < 0 Diff ̸= 0 Diff > 0

Main Task* 14.664 11.512 p-value: 0.927 0.146 0.073
(2.157) (0.930)

*Number of points allocated to Box 2 in the main task.

N 128 527

Note: Standard errors in parentheses.
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B Additional Results

B.1 Results based on the baseline sample (within priors)

In Figure 9, I present the raw data on participants’ decisions on signals indicating a rank

assigned a non-zero prior probability. The remaining graphs and tables can be found

in the main text. The difference between the average decisions in the two conditions

concerning the best three signals is equal to 12.43, is significant at the 1% level (p-value

one-tailed t-test =0.006), and is 9 points higher than the difference between the two

conditions after the remaining signals. If I include the number “4” in the definition of a

“good” signal, the difference between the average decision in the two conditions is equal

to 12.86 (significant at the 1% level, p-value one-tailed t-test =0.0004) and 12.5 points

higher than the difference after the remaining signals.

Figure 9: Decisions in the main task (within priors).
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B.2 Results based on the augmented sample (within priors ± 1 rank)

Figure 10: Decisions in the main task (within priors ±1 rank).

21 20 22 27 40 34 20 11 7 1045 65 84 92 88 87 73 61 41 16
0

10

20

30

40

50

60

70

80

Po
in

ts
 A

llo
ca

te
d 

to
 B

ox
 2

1 2 3 4 5 6 7 8 9 10

Signal Realized/Considered

Treatment
Control
Standard Errors

Figure 11: Belief manipulation after a signal (within priors ±1 rank).
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Figure 12: Belief manipulation after a signal (Treatment minus Control).

-20

-10

0

10

20

30

40
Be

lie
f M

an
ip

ul
at

io
n

1 2 3 4 5 6 7 8 9 10

Signal Realized

Figure 13: Changes in the number of points allocated to the rank = signal.
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B.3 Unexpected signals (higher/lower than within prior ±1 rank)

Figure 14: Decisions in the main task (higher/lower than within prior ±1 rank).
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Figure 15: Belief manipulation after a signal (higher/lower than within prior ±1 rank).
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Figure 16: Belief manipulation after a signal (Treatment minus Control).
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Figure 17: Changes in the number of points allocated to the rank = signal.
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Table 9: The effect of a “good” signal far from prior belief distribution.

Treatment group Control group Both groups

(1) (2) (3) (4) (5) (6)

Treatment 8.211∗∗ 8.682∗∗

(3.38) (3.46)

Good Signal 1-3 -5.725 7.798∗∗ 7.798∗∗

(6.44) (3.46) (3.45)

Good Signal 1-4 -6.077 7.979∗∗ 7.979∗∗

(6.23) (3.60) (3.60)

Treat × Good 1-3 -13.523∗∗

(6.78)

Treat × Good 1-4 -14.056∗∗

(6.58)

N 89 89 358 358 447 447
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good Signal 1-3” is
an indicator variable taking value 1 if a subject received one of the best 3 signals, that is, a signal
“1”, “2” or “3”. “Good Signal 1-4” is defined analogously, with the best 4 signals. “Treatment” is
an indicator variable taking value 1 if a subject was assigned to the treatment condition. The first
two columns are based on participants in the treatment condition, whereas the results in column
3 and 4 are based on observations from the control. All results are based on participants who re-
ceived or considered a signal that was more than 1 rank away from their prior belief distribution.

40



Table 10: The effect of a “good” signal far from prior belief distribution.

Treatment group Control group Both groups

(1) (2) (3) (4) (5) (6)

Treatment 6.957∗∗ 7.393∗∗

(3.18) (3.26)

Good Signal 1-3 -9.260 5.373∗ 5.373∗

(5.62) (3.03) (3.03)

Good Signal 1-4 -9.128∗ 5.742∗ 5.742∗

(5.42) (3.26) (3.26)

Treat × Good 1-3 -14.633∗∗∗

(4.47)

Treat × Good 1-4 -14.869∗∗∗

(4.65)

N 87 87 355 355 442 442
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good Signal 1-3” is
an indicator variable taking value 1 if a subject received one of the best 3 signals, that is, a signal
“1”, “2” or “3”. “Good Signal 1-4” is defined analogously, with the best 4 signals. “Treatment”
is an indicator variable taking value 1 if a subject was assigned to the treatment condition. The
first two columns are based on participants in the treatment condition, whereas the results in col-
umn 3 and 4 are based on observations from the control. All results are based on participants
who received or considered a signal that was more than 1 rank away from their prior belief distri-
bution, excluding subjects with extreme beliefs (p1 = 1).
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B.4 Results based on the second augmented sample

(within prior ± 2 ranks)

Figure 18: Decisions in the main task (within prior ±2 rank).
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Figure 19: Belief manipulation after a signal (within prior ±2 rank).
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Figure 20: Belief manipulation after a signal (Treatment minus Control).
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Figure 21: Changes in the number of points allocated to the rank = signal.
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Table 11: The effect of a “good” signal in the treatment condition.

Treatment group Control group Both groups

(1) (2) (3) (4) (5) (6)

Treatment 1.199 8.068∗∗

(1.96) (4.00)

Good Signal 7.960∗∗∗ -0.494 -0.411
(2.99) (2.47) (2.45)

Display -1.333∗∗ -0.549 -0.530
(0.55) (0.47) (0.47)

Treat × Good 8.255∗∗

(3.84)

Treat × Display -0.891
(0.68)

Bayes 0.818∗∗∗ 0.791∗∗∗ 0.745∗∗∗ 0.739∗∗∗ 0.762∗∗∗ 0.751∗∗∗

(0.05) (0.05) (0.04) (0.04) (0.03) (0.03)

Observations 251 251 793 793 1044 1044
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good Signal” is an
indicator variable taking value 1 if a subject received one of the best 3 signals. “Bayes” is the
number of points that should be allocated given one’s prior beliefs. “Signal Value” refers to the
received signal. It takes values from 1 to 10, with higher values indicating worse signals. Results
are based on an augmented sample of participants whose priors were not far from the signal (no
more than 2 ranks away from the prior belief distribution). Columns 1 and 2 shows the effect of
signal valence in the treatment condition. Columns 3 and 4 present the effect of signal valence
in the control condition. The last two columns contain the results of the difference-in-difference
analysis based on subjects from both conditions.
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B.5 Results based on the entire sample (all participants)

Figures 22, 23, and 24 present the equivalent of Figures 7, 8, and 29 based on the data

from the entire sample (irrespective of subjects’ prior beliefs).

Figure 22: Belief manipulation after a signal (all participants).

34n= n= n= n= n= n= n= n= n= n=25 24 29 41 39 33 21 17 38-5

0

5

10

15

20

25

Be
lie

f M
an

ip
ul

at
io

n

1 2 3 4 5 6 7 8 9 10

Signal Realized

Figure 23: Belief manipulation after a signal (Treatment minus Control).
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Figure 24: Changes in the number of points allocated to the rank = signal.
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B.5.1 Regression analysis (all participants)

Table 12: The effect of a good signal on beliefs in the treatment condition.

Good Signal 5.179∗ 5.391∗ 9.928∗∗∗

(2.948) (2.957) (3.834)

Outside Prior 5.343 8.879
(5.752) (6.040)

Good × Out -11.068∗

(5.989)

Bayes 0.813∗∗∗ 0.893∗∗∗ 0.904∗∗∗

(0.045) (0.098) (0.097)

N 301 301 301
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Standard errors in parentheses.
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Table 13: The effect of a good signal on beliefs in the control condition.

Good Signal 1.697 1.761 -0.291
(2.361) (2.366) (3.268)

Outside Prior 5.896 4.597
(3.838) (4.232)

Good × Out 3.817
(3.405)

Bayes 0.780∗∗∗ 0.872∗∗∗ 0.869∗∗∗

(0.038) (0.072) (0.073)

N 1010 1010 1010
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Standard errors in parentheses.

Table 14: The effect of signal valence in the treatment condition.

Treatment 3.215∗ 3.234∗ 3.964∗ 2.112
(1.88) (1.88) (2.37) (2.47)

Good Signal 1.721 1.782 1.440 -0.269
(2.35) (2.35) (3.07) (3.25)

Treat × Good 3.455 3.626 3.669 10.105∗∗

(3.62) (3.61) (3.68) (4.60)

Bayes 0.787∗∗∗ 0.878∗∗∗ 0.877∗∗∗ 0.878∗∗∗

(0.03) (0.06) (0.06) (0.06)

Outside Prior 5.822∗ 5.965∗ 5.056
(3.18) (3.54) (3.62)

Treat × Out -1.641 2.444
(3.40) (3.86)

Good × Out 0.609 3.795
(2.95) (3.38)

Treat × Good × Out -14.771∗∗

(6.53)

N 1311 1311 1311 1311
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses.

47



B.6 Belief manipulation in the control condition

In this section, I look at belief manipulation in the control condition. Figure 25 and 26

show how the extent of belief manipulation depends on a signal (belief manipulation is

defined by equations (2) and (3)). To generate each graph, I use β = α1 obtained by

estimating (7) in a given sample (the baseline or all subjects in the control condition).

In the case of signals indicating a rank assigned a zero prior probability, I replace the

prior with the lowest value feasible in the experiment (1%). I present the results on the

same scale (from -40 to 20) to facilitate comparisons.

One can note that there is little manipulation after signals to which subjects assigned

non-zero prior probability (Figure 25). The estimated β is equal to 0.87, and for most

signals, participants only slightly deviate from the rational benchmark. The average

deviation from rationality is equal to −2.24 and, while it is significantly different from

zero, it is mostly driven by subjects’ responses to the worst signals. There is little belief

manipulation for signals 1 to 7.

If I augment the sample to include decisions regarding signals to which participants

assigned zero prior probability, the estimated β drops to 0.78, as the added participants

significantly deviate from the Bayesian benchmark. They deviate in the positive direc-

tion, hence the belief manipulation in Figure 26 takes values above zero. The average

manipulation increases to 3.83.
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Figure 25: Belief manipulation in the control condition (within priors).
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Figure 26: Belief manipulation in the control condition (all signals).
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C Robustness checks

C.1 Excluding extreme beliefs

Table 15: The effect of a good signal on beliefs in the treatment condition.

Good Signal 10.075∗∗∗ 9.053∗∗∗

(3.61) (3.25)

Signal Value -2.185∗∗∗ -1.864∗∗∗

(0.74) (0.63)

Bayes 0.893∗∗∗ 0.842∗∗∗ 0.802∗∗∗ 0.766∗∗∗

(0.09) (0.09) (0.06) (0.06)

N 172 172 211 211
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good
Signal” is an indicator variable taking value 1 if a subject received one of the best
three signals. “Signal Value” refers to the received signal. It takes values from
1 to 10, with higher values indicating worse signals. “Bayes” is the number of
points that should be allocated given one’s prior beliefs. Results in the first two
columns are based a sample of subjects who assigned non-zero prior probability
to the signal. In the last two columns, I also include participants who received
a signal adjacent to their prior belief distribution. I exclude 1 subject with ex-
treme beliefs (p1 = 1).

Table 16: The effect of a good signal on beliefs in the control condition.

Good Signal -0.291 -2.350
(3.27) (2.64)

Signal Value -0.943 -0.393
(0.80) (0.56)

Bayes 0.869∗∗∗ 0.867∗∗∗ 0.724∗∗∗ 0.723∗∗∗

(0.07) (0.07) (0.04) (0.04)

N 483 483 651 651
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Standard errors clustered at the individual level. Their values in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good
Signal” is an indicator variable taking value 1 if a subject received one of the best
three signals. “Signal Value” refers to the received signal. It takes values from
1 to 10, with higher values indicating worse signals. “Bayes” is the number of
points that should be allocated given one’s prior beliefs. Results in the first two
columns are based a sample of subjects who assigned non-zero prior probability
to the signal. In the last two columns, I also include participants who received a
signal adjacent to their prior belief distribution. I exclude subjects with extreme
beliefs (p1 = 1).
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Table 17: The effect of signal valence in the treatment condition.

(1) (2) (3) (1) (2) (3)

Treatment 1.926 0.639
(2.48) (2.23)

Good Signal -0.276 11.627∗∗ 11.255∗ -2.278 14.423∗∗∗ 12.726∗

(3.25) (4.78) (6.76) (2.61) (3.73) (6.67)

Treat × Good 10.292∗∗ 11.075∗∗∗

(4.61) (3.96)

Bayes 0.875∗∗∗ 0.742∗∗∗

(0.06) (0.03)

Observations 655 655 655 862 862 862
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses.

Note: The dependent variable in Specification (1) is the number of points allocated to Box 2.
“Good Signal” is an indicator variable that takes the value 1 if a subject received one of the best
three signals. “Bayes” is the number of points that should be allocated given one’s prior beliefs.
In both conditions, I exclude subjects with extreme beliefs (p1 = 1).

Estimates in the first three columns are based on a sample of participants who assigned a non-
zero prior probability to the signal received or considered. In the last three columns, the sample
also includes subjects who received a signal adjacent to their prior belief distribution.

The dependent variable in Specifications (2) and (3) is the deviation from the counterfactual out-
come. The counterfactual was based on values predicted in Specification (2) and with the nearest
neighbor matching in Specification (3). In both approaches, to predict the outcome, I used the
following variables: the signal received, the prior assigned to it, the subject’s rank, and the me-
dian belief. The reported errors are bootstrap standard errors based on 500 replications.

C.2 Controlling for rank and median belief

Table 18: The effect of a “good” signal in the treatment condition.

(1) (2) (3) (1) (2) (3)

Good Signal 9.206∗∗ 9.855∗∗ 10.069∗ 9.155∗∗ 10.904∗∗∗ 11.579∗∗

(4.583) (4.742) (5.791) (3.832) (4.069) (4.576)

Bayes 0.869∗∗∗ 0.945∗∗∗ 0.900∗∗∗ 0.787∗∗∗ 0.809∗∗∗ 0.785∗∗∗

(0.094) (0.097) (0.100) (0.059) (0.060) (0.062)

N 173 173 173 212 212 212
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good Signal” is an
indicator variable taking value 1 if a subject received one of the best 3 signals. “Bayes” is the
number of points that should be allocated given one’s prior beliefs. Specification (1) includes
controls for subjects’ median beliefs. Specification (2) includes controls for subjects’ rank. In
Specification (3), I control for both. Results in the first three columns are based on decisions
about signals to which participants assigned non-zero prior probability. Results in the last
three columns are based on an augmented sample: decisions about signals adjacent to one’s
prior belief distribution.
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Table 19: The effect of a “good” signal in the control condition.

(1) (2) (3) (1) (2) (3)

Good Signal 0.008 -0.605 -0.493 -1.991 -1.935 -2.119
(3.761) (3.242) (3.809) (2.889) (2.683) (2.877)

Bayes 0.880∗∗∗ 0.862∗∗∗ 0.871∗∗∗ 0.718∗∗∗ 0.716∗∗∗ 0.715∗∗∗

(0.075) (0.075) (0.079) (0.041) (0.041) (0.041)

N 483 483 483 652 652 652
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good Signal” is an
indicator variable taking value 1 if a subject received one of the best 3 signals. “Bayes” is the
number of points that should be allocated given one’s prior beliefs. Specification (1) includes
controls for subjects’ median beliefs. Specification (2) includes controls for subjects’ rank.
In Specification (3), I control for both. Results in the first three columns are based on obser-
vations regarding signals to which participants assigned non-zero prior probability. Results
in the last three columns are based on an augmented sample: observations regarding signals
adjacent to one’s prior belief distribution. Standard errors clustered at the participant level.

Table 20: The effect of a “good” signal in the treatment vs control condition.

(1) (2) (3) (1) (2) (3)

Treatment 1.743 2.290 2.038 0.985 0.872 1.139
(2.469) (2.495) (2.578) (2.220) (2.229) (2.293)

Good Signal -0.237 -0.448 -0.504 -1.693 -1.792 -1.801
(2.677) (2.320) (2.684) (2.114) (1.970) (2.115)

Treat × Good 10.459∗∗ 11.481∗∗ 11.776∗∗ 9.886∗∗ 12.280∗∗∗ 11.705∗∗∗

(4.538) (4.707) (4.775) (4.015) (4.122) (4.168)

Bayes 0.883∗∗∗ 0.880∗∗∗ 0.882∗∗∗ 0.737∗∗∗ 0.740∗∗∗ 0.738∗∗∗

(0.050) (0.049) (0.051) (0.029) (0.029) (0.029)

Observations 656 656 656 864 864 864
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good Signal” is an in-
dicator variable taking value 1 if a subject received one of the best 3 signals. “Bayes” is the number
of points that should be allocated given one’s prior beliefs. Specification (1) includes controls for
subjects’ median beliefs. Specification (2) includes controls for subjects’ rank. In Specification (3),
I control for both. Results in the first three columns are based on observations regarding signals to
which participants assigned non-zero prior probability. Results in the last three columns are based
on an augmented sample: observations regarding signals adjacent to one’s prior belief distribution.
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C.3 Alternative definition of a “good” signal

Table 21: The effect of a “good” signal in the treatment condition.

Good Signal 1-2 11.657∗∗∗ 8.502∗∗

(4.269) (3.810)

Good Signal 1-4 9.586∗∗∗ 8.797∗∗∗

(3.280) (3.003)

Good Signal 1-5 8.199∗∗ 8.269∗∗∗

(3.470) (3.105)

Bayes 0.929∗∗∗ 0.860∗∗∗ 0.841∗∗∗ 0.813∗∗∗ 0.779∗∗∗ 0.765∗∗∗

(0.093) (0.091) (0.093) (0.058) (0.057) (0.058)

N 173 173 173 212 212 212
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good Signal 1-n” is an
indicator variable taking value 1 if a subject received one of the best 2, 4, or 5 signals. “Bayes” is the
number of points that should be allocated given one’s prior beliefs. Results in the first three columns
are based on subjects who assigned non-zero prior to the signal. Results in the last three columns are
based on an augmented sample of participants whose priors were not far from the signal.

Table 22: The effect of a “good” signal in the control condition.

Good Signal 1-2 2.590 -1.540
(3.935) (3.167)

Good Signal 1-4 -0.083 -0.293
(2.952) (2.578)

Good Signal 1-5 2.306 2.027
(2.963) (2.619)

Bayes 0.874∗∗∗ 0.869∗∗∗ 0.866∗∗∗ 0.718∗∗∗ 0.720∗∗∗ 0.715∗∗∗

(0.074) (0.071) (0.071) (0.041) (0.040) (0.040)

N 483 483 483 652 652 652
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good Signal 1-n” is an
indicator variable taking value 1 if a subject received one of the best 2, 4, or 5 signals. “Bayes” is
the number of points that should be allocated given one’s prior beliefs. Results in the first three
columns are based on subjects who assigned non-zero prior to the signal. Results in the last three
columns are based on an augmented sample of participants whose priors were not far from the sig-
nal. Standard errors clustered at the participant level.
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Table 23: The effect of a “good” signal in the treatment vs control condition.

Treatment 3.338 0.802 1.290 2.185 -0.000 -0.209
(2.232) (2.703) (3.351) (2.017) (2.393) (2.876)

Good Signal 1-2 2.656 -1.381
(2.894) (2.408)

Treat × Good 1-2 8.644 9.207∗∗

(5.325) (4.653)

Good Signal 1-4 -0.084 -0.294
(2.092) (1.806)

Treat × Good 1-4 9.650∗∗ 9.317∗∗

(4.078) (3.659)

Good Signal 1-5 2.320 1.942
(2.138) (1.826)

Treat × Good 1-5 5.754 6.728∗

(4.211) (3.701)

Bayes 0.888∗∗∗ 0.867∗∗∗ 0.859∗∗∗ 0.740∗∗∗ 0.734∗∗∗ 0.726∗∗∗

(0.049) (0.049) (0.049) (0.029) (0.029) (0.029)

N 656 656 656 864 864 864
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good Signal 1-2” is
an indicator variable taking value 1 if a subject received one of the best 2 signals, that is, a signal
“1” or “2”. “Good Signal 1-4” and “Good Signal 1-5” are defined analogously. “Treatment” is an
indicator variable taking value 1 if a subject was assigned to the treatment condition. “Bayes” is
the number of points that should be allocated given one’s prior beliefs. Results in the first three
columns are based on observations regarding signals to which participants assigned non-zero prior
probability. Results in the last three columns are based on an augmented sample: observations re-
garding signals that were not far from the prior belief distribution.
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C.4 Results with a restriction α1 = 1 (deviations from Bayes, unweighted)

Figure 27: Deviations from Bayes in the treatment condition.
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Figure 28: Deviations from Bayes in the control condition.
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Table 24: The effect of a “good” signal in the treatment condition.

Good Signal 1-3 10.270∗∗∗ 9.783∗∗∗

(3.591) (3.319)

Good Signal 1-4 9.188∗∗∗ 7.712∗∗

(3.283) (3.086)

Signal Value -1.879∗∗ -1.409∗∗

(0.728) (0.643)

Observations 173 173 173 212 212 212
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the deviation from the Bayesian benchmark (the number of points
allocated to Box 2 minus the number of points that should be allocated given one’s prior beliefs).
“Good Signal 1-3” is an indicator variable taking value 1 if a subject received one of the best 3
signals, that is, a signal “1”, “2” or “3”. “Good Signal 1-4” and “Good Signal 1-5” are defined anal-
ogously. Results in the first three columns are based on subjects who assigned non-zero prior to the
signal. Results in the last three columns are based on an augmented sample of participants whose
priors were not far from the signal.

Table 25: The effect of a “good” signal in the control condition.

Good Signal 1-3 0.037 -0.706
(3.237) (2.738)

Good Signal 1-4 -0.033 -0.315
(2.982) (2.661)

Signal Value -0.918 -0.135
(0.815) (0.602)

N 483 483 483 652 652 652
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the deviation from the Bayesian benchmark (the num-
ber of points allocated to Box 2 minus the number of points that should be allocated
given one’s prior beliefs). “Good Signal 1-3” is an indicator variable taking value 1 if
a subject received one of the best 3 signals, that is, a signal “1”, “2” or “3”. “Good
Signal 1-4” and “Good Signal 1-5” are defined analogously. Results in the first three
columns are based on subjects who assigned non-zero prior to the signal. Results in
the last three columns are based on an augmented sample of participants whose priors
were not far from the signal. Standard errors are clustered at the participant level.
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Table 26: The effect of a “good” signal in the treatment vs control condition.

Treatment 1.956 0.863 9.364∗ -0.395 -0.690 8.889∗∗

(2.408) (2.716) (4.823) (2.258) (2.506) (4.340)

Good Signal 1-3 0.037 -0.706
(2.315) (2.051)

Treat × Good 1-3 10.233∗∗ 10.488∗∗

(4.490) (4.142)

Good Signal 1-4 -0.033 -0.315
(2.102) (1.892)

Treat × Good 1-4 9.221∗∗ 8.027∗∗

(4.095) (3.831)

Signal Value -0.918∗ -0.135
(0.487) (0.394)

Treat × Signal -0.961 -1.274
(0.916) (0.796)

N 656 656 656 864 864 864
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the deviation from the Bayesian benchmark (the number of points
allocated to Box 2 minus the number of points that should be allocated given one’s prior beliefs).
“Good Signal 1-3” is an indicator variable taking value 1 if a subject received one of the best 3
signals, that is, a signal “1”, “2” or “3”. “Good Signal 1-4” and “Good Signal 1-5” are defined
analogously. “Treatment” is an indicator variable taking value 1 if a subject was assigned to the
treatment condition. Results in the first three columns are based on observations regarding sig-
nals to which participants assigned non-zero prior probability. Results in the last three columns
are based on an augmented sample: observations regarding signals that were not far from the prior
belief distribution.
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C.5 First vs last decisions in the control

Table 27: The effect of a good signal on beliefs in the control condition.

Decisions: 1-5 6-10 1-5 6-10

Good Signal 0.625 -0.954 -3.157 -0.700
(3.862) (3.746) (3.218) (3.330)

Bayes 0.940∗∗∗ 0.803∗∗∗ 0.709∗∗∗ 0.729∗∗∗

(0.103) (0.103) (0.051) (0.057)

N 253 230 351 301
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Standard errors clustered at the individual level. Their values in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good
Signal” is an indicator variable taking value 1 if a subject received one of the best
three signals. “Bayes” is the number of points that should be allocated given
one’s prior beliefs. Results in the first two columns are based a sample of subjects
who assigned non-zero prior probability to the signal. In the last two columns, I
also include participants who received a signal adjacent to their prior belief dis-
tribution. Results in the columns 1 and 3 are based on the first 5 decisions in the
control condition. Results in the columns 2 and 4 are based on the last 5 deci-
sions in the control condition.

Table 28: The effect of signal valence in the treatment condition.

Decisions: 1-5 6-10 1-5 6-10

Treatment 2.668 1.444 0.530 1.137
(2.851) (2.667) (2.589) (2.365)

Good Signal 0.547 -0.954 -3.038 -0.522
(3.852) (3.746) (3.194) (3.311)

Treat × Good 9.456∗ 10.667∗∗ 11.665∗∗∗ 9.219∗∗

(5.102) (4.969) (4.379) (4.476)

Bayes 0.925∗∗∗ 0.843∗∗∗ 0.744∗∗∗ 0.759∗∗∗

(0.070) (0.072) (0.038) (0.041)

Observations 426 403 563 513
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good
Signal” is an indicator variable that takes the value 1 if a subject received one of
the best three signals. “Bayes” is the number of points that should be allocated
given one’s prior beliefs. Results in the first two columns are based on a sample
of subjects who assigned non-zero prior probability to the signal. In the last two
columns, I also include participants who received a signal adjacent to their prior
belief distribution. Results in columns one and three are based on the first 5 deci-
sions in the control condition (and all observations from the treatment). Results
in columns two and four are based on the last 5 decisions in the control condition
(and all observations from the treatment).
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C.6 Guessing a random number

Table 29: The effect of a “good” signal in the treatment condition.

Good Signal 1-3 10.723∗ 9.268∗

(6.388) (5.561)

Good Signal 1-4 9.794∗ 8.880∗

(5.856) (5.201)

Signal Value -2.372∗∗ -2.165∗∗

(1.162) (0.990)

Observations 68 68 68 91 91 91
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good Signal
1-3” (“Good Signal 1-4”) is an indicator variable taking value 1 if a subject received one
of the best 3 (4) signals. “Signal Value” refers to the received signal. It takes values from
1 to 10, with higher values indicating worse signals. In every specification, I control for
the Bayesian benchmark. The sample includes only participants in the treatment condi-
tion who saw a random number. Results in the first three columns are based on subjects
who assigned non-zero prior to the signal. Results in the last three columns are based on
an augmented sample of participants whose priors were not far from the signal.

Table 30: The effect of a “good” signal in the control condition.

Good Signal 1-3 -0.525 -1.762
(3.246) (2.695)

Good Signal 1-4 -0.040 0.044
(2.901) (2.559)

Signal Value -0.891 -0.543
(0.792) (0.595)

Observations 431 431 431 584 584 584
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good
Signal 1-3” ( “Good Signal 1-4”) is an indicator variable taking value 1 if a subject
received one of the best 3 (4) signals. “Signal Value” refers to the received signal.
It takes values from 1 to 10, with higher values indicating worse signals. In ev-
ery specification, I control for the Bayesian benchmark. The sample includes only
participants in the control condition who were guessing a number different than
their rank. Results in the first three columns are based on subjects who assigned
non-zero prior to the signal. Results in the last three columns are based on an aug-
mented sample of participants whose priors were not far from the signal.
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Table 31: The effect of a “good” signal in the treatment vs control condition.

Treatment 1.815 1.297 11.126 1.989 2.071 13.196∗∗

(3.527) (3.865) (7.756) (3.254) (3.530) (6.136)

Good Signal 1-3 -0.550 -1.794
(3.240) (2.686)

Treat × Good 1-3 10.921 11.131∗

(6.767) (5.668)

Good Signal 1-4 -0.040 0.040
(2.898) (2.556)

Treat × Good 1-4 8.876 8.373
(6.281) (5.495)

Signal Value -0.897 -0.554
(0.790) (0.593)

Treat × Signal -1.175 -1.496
(1.390) (1.077)

N 499 499 499 675 675 675
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

The dependent variable is the number of points allocated to Box 2. “Good Signal 1-3”
(“Good Signal 1-4”) is an indicator variable taking value 1 if a subject received one of the
best 3 (4) signals. “Signal Value” refers to the received signal. It takes values from 1 to
10, with higher values indicating worse signals. “Treatment” is an indicator variable tak-
ing value 1 if a subject was assigned to the treatment condition.

In every specification, I control for the Bayesian benchmark. The sample includes only par-
ticipants in the control condition who were guessing a number different than their rank.
Results in the first three columns are based on observations regarding signals to which par-
ticipants assigned non-zero prior probability. Results in the last three columns are based
on an augmented sample: observations regarding signals that were not far from the prior
belief distribution.
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C.7 Gender Effects

Table 32: Differences between men and women.

Men Women Diff < 0 Diff ̸= 0 Diff > 0

IQ test score 5.323 5.250 p-value: 0.572 0.856 0.428

Rank 5.517 5.602 p-value: 0.392 0.784 0.607

Measures of Belief Distribution:

Mean Belief 4.508 4.716 p-value: 0.137 0.274 0.863

1st Quartile 3.752 4.009 p-value: 0.090 0.179 0.910

Median Belief 4.497 4.704 p-value: 0.144 0.289 0.856

3st Quartile 5.233 5.398 p-value: 0.205 0.410 0.795

Range 4.986 5.102 p-value: 0.258 0.516 0.742

N 294 108

Table 33: Decisions about signals with non-zero prior probability.

Men Women Diff < 0 Diff ̸= 0 Diff > 0

Decision Treatment 56.146 56.060 p-value: 0.508 0.984 0.492
(2.491) (3.563)

N 123 50

Decision Control 49.905 51.198 p-value: 0.329 0.659 0.671
(1.501) (2.486)

N 357 126

Note: Decision Treatment (Control) denotes the number of points allocated to Box 2 after observing
a signal (considering a signal) in the treatment (control) condition. Standard errors in parentheses.
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Table 34: Decisions about signals with zero prior probability.

Men Women Diff < 0 Diff ̸= 0 Diff > 0

Decision Treatment 12.740 20.438 p-value: 0.061 0.123 0.939
(2.190) (5.538)

N 96 32

Decision Control 11.214 12.388 p-value: 0.292 0.583 0.709
(1.057) (1.949)

N 393 134

Note: Decision Treatment (Control) denotes the number of points allocated to Box 2 after observing
a signal (considering a signal) in the treatment (control) condition. Standard errors in parentheses.

Table 35: The effect of a “good” signal in the treatment condition.

(1) (2) (3) (1) (2) (3)

Good Signal 9.801∗∗∗ 9.381∗∗ 9.947∗ 8.777∗∗∗ 7.684∗ 9.709∗∗

(3.605) (4.336) (5.466) (3.252) (3.902) (4.763)

Female 3.866 3.446 4.501 3.698 2.567 1.919
(3.617) (4.347) (4.466) (3.279) (3.966) (4.031)

Female × Good 1.369 -0.015 3.593 3.635
(7.811) (7.934) (7.059) (7.256)

Bayes 0.915∗∗∗ 0.915∗∗∗ 0.961∗∗∗ 0.812∗∗∗ 0.812∗∗∗ 0.812∗∗∗

(0.092) (0.092) (0.098) (0.057) (0.058) (0.060)

N 173 173 173 212 212 212
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good Signal” is an
indicator variable taking value 1 if a subject received one of the best 3 signals. “Bayes” is the
number of points that should be allocated given one’s prior beliefs. Specification (1) includes
dummy for gender (1 if female). Specification (2) includes the gender dummy and its interaction
with a good signal. In Specification (3), I add a control for a participant’s rank. Results in the
first three columns are based on observations regarding signals to which participants assigned
non-zero prior probability. Results in the last three columns are based on an augmented sample:
observations regarding signals that were not far from the prior belief distribution.
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Table 36: The effect of a “good” signal in the control condition.

(1) (2) (3) (1) (2) (3)

Good Signal -0.260 -1.478 -1.829 -1.924 -1.950 -1.974
(3.259) (3.797) (3.791) (2.726) (3.250) (3.220)

Female 1.695 0.369 -0.512 0.281 0.251 -0.445
(3.035) (3.555) (3.729) (2.551) (3.091) (3.333)

Female × Good 4.834 4.959 0.101 0.136
(7.053) (7.311) (5.687) (5.755)

Bayes 0.869∗∗∗ 0.871∗∗∗ 0.865∗∗∗ 0.718∗∗∗ 0.718∗∗∗ 0.716∗∗∗

(0.073) (0.072) (0.074) (0.040) (0.040) (0.041)

N 483 483 483 652 652 652
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good Signal” is an
indicator variable taking value 1 if a subject received one of the best 3 signals. “Bayes” is the
number of points that should be allocated given one’s prior beliefs. Specification (1) includes
dummy for gender (1 if female). Specification (2) includes the gender dummy and its interaction
with a good signal. In Specification (3), I add a control for a participant’s rank. Results in the
first three columns are based on observations regarding signals to which participants assigned
non-zero prior probability. Results in the last three columns are based on an augmented sample:
observations regarding signals that were not far from the prior belief distribution. Standard er-
rors clustered at the participant level.
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Table 37: The effect of a “good” signal in the treatment vs control condition.

(1) (2) (3) (1) (2) (3)

Treatment 2.086 1.578 1.292 0.818 -0.034 0.254
(2.399) (2.701) (2.821) (2.164) (2.429) (2.540)

Good Signal -0.224 -1.204 -1.461 -1.832 -2.118 -1.887
(2.309) (2.572) (2.673) (1.966) (2.204) (2.283)

Treat × Good 9.969∗∗ 9.711∗∗ 10.732∗∗ 10.389∗∗∗ 10.244∗∗ 9.248∗

(4.473) (4.485) (5.331) (3.962) (3.971) (4.722)

Female 2.253 0.642 0.364 1.098 -0.038 0.227
(2.016) (2.669) (2.784) (1.762) (2.339) (2.437)

Female × Good 3.859 4.874 1.104 0.206
(4.477) (5.315) (3.847) (4.486)

Female × Treat 1.887 2.931 3.138 2.083
(4.517) (5.393) (4.038) (4.862)

Female × Good × Treat -3.508 3.406
(9.880) (8.736)

Bayes 0.880∗∗∗ 0.882∗∗∗ 0.883∗∗∗ 0.739∗∗∗ 0.739∗∗∗ 0.739∗∗∗

(0.049) (0.049) (0.049) (0.029) (0.029) (0.029)

N 656 656 656 864 864 864
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good Signal” is an indicator
variable taking value 1 if a subject received one of the best 3 signals. “Bayes” is the number of points that
should be allocated given one’s prior beliefs. Specification (1) includes dummy for gender (1 if female). Spec-
ification (2) includes the gender dummy and its interaction with a good signal and the treatment dummy. In
Specification (3), I add a triple interaction of gender, treatment, and good signal. Results in the first three
columns are based on observations regarding signals to which participants assigned non-zero prior probabil-
ity. Results in the last three columns are based on an augmented sample: observations regarding signals that
were not far from the prior belief distribution.
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D Consistency

In this section, I examine the data from the second belief elicitation. First, I look at

changes in participants’ beliefs and show that beliefs about the box did translate to

beliefs about the rank reported in the final belief elicitation. I consider the number of

points allocated to the rank corresponding to the received signal. On average, subjects

allocated 32.86 points to the relevant rank in Belief Elicitation II. This value is 11.36

points higher than the number of points allocated to the same rank in Belief Elicitation I.

Figure 29 shows how the difference in the number of allocated points depends on the

signal realization (a similar graph for the augmented sample is presented in Appendix B.4).

For example, 16 subjects who received a signal “2” allocated, on average, 15 points more

to Rank 2 in the second belief elicitation. Therefore, they revealed a 15 pp higher prob-

ability that “2” is their rank. One can notice that the change in beliefs depends on the

signal value. The average change in beliefs is 80% higher after signals 1 to 4, compared

to signals 5 to 10 (p-value of one-tailed t-test = 0.0097). The difference remains positive

and significant if I control for prior beliefs or the Bayesian benchmark.

I examine the relation between the decisions about the box and the posterior about

the rank using regression analysis. The dependent variable is the number of points allo-

cated to the relevant rank in Belief Elicitation II. I regress this value on two independent

Figure 29: Changes in the number of points allocated to the rank = signal.
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Table 38: The effect of the decision about the box on the posterior belief.

(1) (2)

Points Bayes 0.473∗∗∗ 0.480∗∗∗

(0.087) (0.089)

Points Box 2 0.391∗∗∗ 0.385∗∗∗

(0.064) (0.065)

Good Signal 1.280
(3.127)

Constant -20.963∗∗∗ -21.501∗∗∗

(4.927) (5.110)

N 173 173
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to the
rank corresponding to the received signal. “Points Bayes” is the number
of points that should be allocated based on the prior belief and the sig-
nal. “Points Box 2” is the number of points allocated allocated to Box 2
(indicative of one’s rank) in the main task. The sample is restricted to
subjects who assigned non-zero prior probability to the signal.

variables. “Points Bayes” denotes the number of points that should be allocated based

on the prior belief and the signal. It does not involve subjects’ actual decisions about

the boxes. In contrast, the independent variable “Points Box 2” is based solely on the

decision about the boxes. It denotes the number of points allocated to Box 2. The results

are gathered in Table 38. The estimates in the first column show that both variables

have a positive and significant effect on the final belief about the rank. In the second

specification, I add an independent variable “Good Signal” defined as in the previous

section. The coefficient is not significant, meaning that there is no additional effect of a

“good” signal beyond the effect it had on the decision about the box.

The results validate the assumption that beliefs about Box 2 reveal subjects’ beliefs

about the rank (which might seem obvious due to the signal structure—Box 2 contains

only numbers equal to one’s rank). One can also view the second belief elicitation as an

additional check that subjects understood the main task.

Additional Comments

Several points should be kept in mind when interpreting the data. In experiments that

measure beliefs multiple times, one common problem is people’s desire to be seen as
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consistent decision-makers (Falk and Zimmermann, 2017). Despite my best efforts to

ensure anonymity and instruct subjects to treat each part of the experiment indepen-

dently, these motives might influence beliefs revealed in Belief Elicitation II.37 In this

case, the results would provide a lower bound on the effect.

Second, while I explained in intuitive terms how one can translate prior beliefs into

a posterior about the box, I provided no such guidance on how to translate the prior

distribution and the signal into the posterior distribution about the rank, nor did I

explain how to arrive at the posterior distribution given one’s beliefs about the box.

One implication is that I no longer have control over what people think to be the right

course of action. For this reason, one should not expect the results to perfectly align

with the Bayesian posterior or the decision about the box. Nevertheless, if the decision

about the box revealed the subjects’ actual beliefs, it should be positively correlated

with the posterior about the rank. This is exactly what I observe in the data.

37This concern is alleviated in the main analysis, for two reasons. First, I elicited posterior beliefs in
a different way: by asking about the box. Second, the analysis is based on a comparison between the
treatment and the control condition, and there is no reason to suspect that consistency motives operate
differently in the two conditions.
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E Literature: Design Comparison

The experiment design developed in this paper differs from the designs used in the

literature. My main goal was to develop an updating task that induces a strong emotional

reaction to a signal. I compare it to the experiments conducted in the past in Table 39.

In this review, I focus on papers that study updating about ego-relevant characteristics

and do so by asking subjects to update their beliefs about their relative performance.38

The papers gathered in the first column in Table 39 are categorized based on one of

the relevant design features. In the second column, I describe the design used in my

experiment. The last column presents the rationale behind choosing this particular

feature for my work.

One design feature that requires an additional comment is the information structure.

In almost all of the work reviewed in this section, the information structure follows the

scheme presented in Figure 30.39 There are two states of the world H and L indicating

whether one’s score was in the upper or the lower half of the test score distribution.

Subjects receive a signal that is informative about the state with known precision, e.g.,

75% in Möbius et al. (2022). However, this signal structure becomes more complicated

if extended to a larger signal and state space (see Figure 31) and I am not aware of any

experimental work that implements it. Papers that used 10 states of the world, Eil and

Rao (2011) and Zimmermann (2020), use binary signals shown in Figure 32. A signal

informs a subject whether or not he ranked higher than another participant who was

randomly drawn from a group of 10 (I denote these binary signals with H and L). The

precision depends on the state and, for the first signal, takes one of the following values:

55.6%, 66.7%, 77.8%, 88.9% or 100% (for the second signal it is 50%, 62.5%, 75%, 87.5%

or 100%, as comparisons are made without replacement).

38For a review of the literature on learning about absolute performance as well as updating about
non-ego-relevant parameters, I refer the reader to Barron (2021) and Coutts (2019). An even broader
review of the literature on errors in probabilistic reasoning can be found in Benjamin (2019).

39See Table 39 for the references.
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Figure 30: Design used in the literature (2 states).

Figure 31: Design used in the literature extended to 10 states.

Figure 32: Design used in Eil and Rao (2011) and Zimmermann (2020).
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The design commonly used in the literature (Figure 30) extended to 10 states can be

simplified by distinguishing two urns: one with balls indicating the state (the “IQ” urn),

and one with every possible number (the “Random” urn).40 Figures 33 and 34 present

the simplified design for 2 and 10 states of the world. The information structure in

Figure 33 is equivalent to the one depicted on Figure 30, assuming either urn can be

selected with equal probability 1
2 . If the state is H, a ball indicating H is drawn with

probability 0.5 · 0.5 + 0.5 · 1 = 0.75, the same as in Figure 30. Similarly, Figure 34 is

equivalent to the information structure in Figure 31 with the signal precision of 55%.

Figure 33: Design developed in this paper (2 states).

Figure 34: Design developed in this paper (10 states).

40One could also distinguish the two urns along the dashed line in Figure 31, with the Random urn
containing all numbers except the one that indicates the state. This design, however, lacks the intuitive
interpretation of “a random urn” from which any number can be drawn with the same probability, hence
it might be more difficult to explain to the participants.
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Table 39: Literarure review: design comparison.

Other Work This Paper Goal

1. Number of signals:

– more than 1 signal – 1 signal – separating reaction to
signals from information
aggregation.Buser et al., 2018; Coutts, 2019; Drobner and

Goerg, 2024; Eil and Rao, 2011; Möbius et al.,
2022; Zimmermann, 2020.

– 1 signal

Drobner, 2022; Ertac, 2011; Schwardmann and

Van der Weele, 2019.

2. State space, signal space, signal precision:

– 2 states (above or below 50%;
above or below 85% in Coutts, 2019),

– 2 signal values,
– signal precision: 67%

– 10 states
(deciles of the
distribution)

– 10 signal values

– richer state space and
signal space to induce a
stronger emotional reaction
to a signal (based on the
observation that it is more
painful for subjects to be
in the bottom 10% than in
the bottom 50%).

Coutts, 2019; Drobner, 2022; Drobner and

Goerg, 2024.

– 2 states (above or below 50%)
– 2 signal values
– signal precision: 70%

Buser et al., 2018.

– 2 states (above or below 50%)
– 2 signal values
– signal precision: 75%

Möbius et al., 2022; Schwardmann and

Van der Weele, 2019.

– 3 states (lower 20%, middle 60%,
or upper 20%)

– 2 signal values
– perfectly informative
but coarse signals

Ertac, 2011.

– 10 states (deciles of the distribution)
– 2 signal values
– signal precision depends on the state:
56%, 67%, 78%, 89% or 100%.

Eil and Rao, 2011; Zimmermann, 2020.
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Other Work This Paper Goal

3. Information structure and implementation:

– information structure as in Figure 30
– a signal is true or false with precision
known to the subjects

– information
structure
shown in
Figure 34

– it is equivalent
to Figure 31
with a signal
precision
of 55%.

– it would not be possible
to introduce richer state
and signal space using any
other information structure
from the literature.Buser et al., 2018; Coutts, 2019; Drobner and

Goerg, 2024; Möbius et al., 2022; Schwardmann
and Van der Weele, 2019. Drobner, 2022, uses
the same information structure (Figure 30), but
the signal is a comparison with another subject.

– information structure as in Figure 32
– a signal is a pairwise comparison
with another subject

Eil and Rao, 2011; Zimmermann, 2020.

– a signal is always true, but only reveals
whether the subject is in the top or
the bottom half of the distribution,
and not precisely the state

Ertac, 2011.

4. Comparison group:

– a group of 4 – 300 subjects – a larger comparison group
makes it more difficult to
use reappraisal to lessen
the impact of the negative
signal (e.g., in the case of
a group of four, one can
easily attribute a negative
signal to being assigned to
a particularly strong pair
of subjects). When there is
another way of “explaining”
a bad signal, there may be
no need for (costly) belief
distortion.

Drobner, 2022; Schwardmann and

Van der Weele, 2019.

– a group of 8

Buser et al., 2018.

– a group of 10

Eil and Rao, 2011; Ertac, 2011;

Zimmermann, 2020.

– a group larger than 10

Coutts, 2019; Drobner and Goerg, 2024;

Möbius et al., 2022.

5. Timing of revealing information:

– In most of the papers mentioned above
it is unclear whether and when subjects
expected the resolution of uncertainty
(see Drobner, 2022, for a comprehensive
literature review). This problem was
noticed and tested in the recent work
by Drobner (2022).

– online access
one week after
the session

– to describe the behavior with
a one-period model without
the dynamic concerns

– to bring the design closer
to the real-world situations:
grades are rarely immediate,
need to be checked etc.
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F Including Confused Individuals

F.1 Mistakes in control questions

The experimental tasks required a good understanding of the instructions. For this

reason, before the main task, participants had to solve a set of control questions. While

I allowed confused participants to finish the experiment, I collected the data on the

number of mistakes and removed the most mistaken subjects from the main analysis.

In the end, I excluded 25 participants who made three or more mistakes in five control

questions.41 Additionally, one participant reported to the assistant after the session

that he mixed up the two boxes. His cubicle number was noted and this observation was

removed from the analysis (the participant with a number 340).

Figure 35: Mistakes in the five control questions in the two conditions.
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41One of the control questions (Question 2) was slightly different in the two conditions, and participants
in the control condition made more mistakes in their version. I did not include this question in the
measure of subjects’ mistakes.
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F.2 Results based on a sample including confused participants

Table 40: The effect of a “good” signal in the treatment condition.

Good Signal 1-3 9.625∗∗∗ 8.598∗∗∗

(3.575) (3.186)

Good Signal 1-4 8.201∗∗ 7.532∗∗

(3.268) (2.952)

Signal Value -1.760∗∗ -1.527∗∗

(0.712) (0.607)

N 183 183 183 224 224 224
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good Signal 1-3”
(“Good Signal 1-4”) is an indicator variable taking value 1 if a subject received one of the best
3 (4) signals. “Signal Value” refers to the received signal. It takes values from 1 to 10, with
higher values indicating worse signals. In every specification, I control for the Bayesian bench-
mark. Results in the first three columns are based on subjects who assigned non-zero prior to
the signal. Results in the last three columns are based on an augmented sample of participants
whose priors were not far from the signal.

Table 41: The effect of a “good” signal in the control condition.

Good Signal 1-3 -0.140 -1.586
(3.139) (2.626)

Good Signal 1-4 -0.599 -0.567
(2.863) (2.488)

Signal Value -0.853 -0.474
(0.780) (0.569)

N 502 502 502 680 680 680
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. “Good
Signal 1-3” (“Good Signal 1-4”) is an indicator variable taking value 1 if a subject
received one of the best 3 (4) signals. “Signal Value” refers to the received signal. It
takes values from 1 to 10, with higher values indicating worse signals. In every speci-
fication, I control for the Bayesian benchmark. Results in the first three columns are
based on subjects who assigned non-zero prior to the signal. Results in the last three
columns are based on an augmented sample of participants whose priors were not far
from the signal.
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Table 42: The effect of a “good” signal in the treatment vs control condition.

Treatment 2.077 0.966 9.115∗ 0.695 0.005 9.119∗∗

(2.434) (2.704) (5.520) (2.191) (2.412) (4.401)

Good Signal 1-3 -0.126 -1.483
(3.120) (2.605)

Treat × Good 1-3 9.715∗∗ 9.731∗∗

(4.484) (3.891)

Good Signal 1-4 -0.599 -0.570
(2.856) (2.482)

Treat × Good 1-4 8.758∗∗ 8.355∗∗

(4.346) (3.839)

Signal Value -0.854 -0.454
(0.779) (0.567)

Treat × Signal -0.896 -1.137
(1.045) (0.793)

N 685 685 685 904 904 904
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01 Standard errors in parentheses.

The dependent variable is the number of points allocated to Box 2. “Good Signal 1-3” (“Good
Signal 1-4”) is an indicator variable taking value 1 if a subject received one of the best 3 (4)
signals. “Signal Value” refers to the received signal. It takes values from 1 to 10, with higher
values indicating worse signals. “Treatment” is an indicator variable taking value 1 if a subject
was assigned to the treatment condition.

In every specification, I control for the Bayesian benchmark. Results in the first three columns
are based on observations regarding signals to which participants assigned non-zero prior prob-
ability. Results in the last three columns are based on an augmented sample: observations
regarding signals that were not far from the prior belief distribution.
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G Questionnaires

Table 43: The effect of other variables on decisions in the treatment condition.

Non-zero prior Prior equal to zero

(1) (2) (3) (1) (2) (3)

Extroversion -0.404 -0.405 -0.587 -0.095 0.109 0.352
(0.47) (0.48) (0.48) (0.51) (0.51) (0.55)

Conscientiousness -0.247 -0.049 -0.139 0.348 0.658 0.879
(0.58) (0.60) (0.60) (0.65) (0.66) (0.68)

Openness -0.225 -0.335 -0.521 1.022 0.889 0.885
(0.49) (0.50) (0.50) (0.64) (0.64) (0.64)

Neuroticism -0.361 -0.482 -0.478 0.755 0.002 -0.001
(0.42) (0.61) (0.62) (0.56) (0.72) (0.73)

Agreeableness 0.292 0.244 0.123 -0.141 -0.016 0.108
(0.63) (0.65) (0.66) (0.72) (0.71) (0.72)

Anxiety State 0.318 0.338 -0.636∗∗ -0.605∗

(0.24) (0.24) (0.31) (0.31)

Anxiety Trait -0.349 -0.422 -0.088 -0.060
(0.27) (0.27) (0.34) (0.35)

Reappraisal 3.672∗∗ -2.493
(1.81) (2.24)

Suppression -3.110 2.590
(2.03) (2.54)

N 166 166 166 124 124 124
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. The sample in-
cludes only participants in the treatment condition. Estimates in the first three columns are
based on a sample of participants who assigned a non-zero prior probability to the signal re-
ceived. The number of observations (166) is different from our baseline sample (173), because
in one session, the data from the final questionnaire was lost (due to a human error). In the
last three columns, the regressions are based on the remaining observations—participants
who assigned a zero prior to the rank corresponding to the received signal. In the first three
columns, I control for the Bayesian benchmark. In the last three, this control is omitted as
the Bayesian benchmark is undefined.
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Table 44: The effect of signal valence in the treatment condition.

Non-zero prior Prior equal to zero

(1) (2) (1) (2)

Emotion: Enjoyment -1.295 -1.677 -0.325 -0.430
(1.29) (1.30) (1.44) (1.44)

Emotion: Hope 1.051 0.917 -1.328 -1.197
(1.43) (1.42) (1.98) (2.01)

Emotion: Pride 1.933 2.030 0.190 0.180
(1.60) (1.59) (2.28) (2.31)

Emotion: Relief 0.440 0.320 0.229 0.170
(1.72) (1.72) (2.24) (2.25)

Emotion: Anger -0.633 -0.844 -2.222 -2.407
(1.26) (1.26) (1.50) (1.51)

Emotion: Anxiety 1.798 2.208 5.393∗ 5.530∗

(2.02) (2.04) (2.82) (2.83)

Emotion: Shame 0.741 0.618 -2.082 -2.291
(1.36) (1.35) (1.83) (1.88)

Emotion: Hopelessness -0.709 -0.925 5.697∗∗ 5.707∗∗

(2.06) (2.05) (2.62) (2.62)

Reappraisal 3.162∗ -2.703
(1.79) (2.03)

Suppression -2.415 1.363
(1.93) (2.31)

N 166 166 124 124
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. The sam-
ple includes only participants in the treatment condition. Estimates in the first two
columns are based on a sample of participants who assigned a non-zero prior prob-
ability to the signal received. The number of observations (166) is different from
the baseline sample (173), because in one session, the data from the final question-
naire was lost (due to a human error). In the last three columns, the regressions
are based on the remaining observations—participants who assigned a zero prior
to the rank corresponding to the received signal. In the first three columns, I con-
trol for the Bayesian benchmark. In the last three, this control is omitted as the
Bayesian benchmark is undefined.
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G.1 Negative Emotions and Reappraisal

Table 45: The effect of emotional state and reappraisal (indicator variables).

(1) (2) (3) (4) (5) (6) (7)

Reappraisal 6.055∗ 5.944∗ 9.429∗∗ 5.353 5.237
(3.36) (3.38) (4.70) (3.39) (4.63)

Negative Emotions -1.776 -1.280 1.621
(3.33) (3.32) (4.29)

Negative × Reapp -7.214
(6.76)

Anxiety State 5.638∗ 4.858 4.752
(3.38) (3.40) (4.47)

Anxiety State × Reapp 0.252
(6.83)

N 166 166 166 166 166 166 166
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses.

Table 46: The effect of emotional state and reappraisal (indicator variables).

(1) (2) (3) (4) (5) (6) (7)

Reappraisal 7.820∗∗ 7.798∗∗ 11.924∗∗∗ 7.305∗∗ 5.918
(3.03) (3.04) (4.35) (3.05) (4.28)

Negative Emotions -0.884 -0.596 2.662
(3.04) (3.00) (3.87)

Negative × Reapp -8.091
(6.09)

Anxiety State 4.831 3.894 2.726
(3.01) (3.01) (3.92)

Anxiety State × Reapp 2.843
(6.12)

N 205 205 205 205 205 205 205
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. The sample includes only partic-
ipants in the treatment condition. Estimates in the first two columns are based on a sample of participants
who assigned a non-zero prior probability to the signal received. The number of observations in Table 45
(166) is different from the baseline sample (173), because in one session, the data from the final question-
naire was lost (due to a human error). In Table 46, the regressions are based on an augmented sample.
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Table 47: The effect of emotional state and reappraisal (indicator variables).

(1) (2) (3) (4) (5) (6) (7)

Reappraisal 1.668 1.768 3.542 3.076 1.044
(4.59) (4.48) (6.45) (4.56) (7.32)

Negative Emotions 11.326∗∗ 11.341∗∗ 12.649∗∗

(4.34) (4.35) (5.54)

Negative × Reapp -3.450
(9.00)

Anxiety State -9.636∗∗ -10.050∗∗ -11.231∗∗

(4.42) (4.47) (5.58)

Anxiety State × Reapp 3.332
(9.38)

N 124 124 124 124 124 124 124
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01. Standard errors in parentheses.

Note: The dependent variable is the number of points allocated to Box 2. The sample includes only participants in
the treatment condition. The regressions are based on a sample of participants who assigned a zero prior probability
to the rank corresponding to the received signal.
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